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1 Introduction

1.1 Motivation

VIO (Visual Inertial Odometry) algorithms that fuse the optical in­
formation from the images of a camera with the accelerometer and gyroscope
readings from an IMU (Inertial Measurement Unit) to achieve accurate state
estimates of the agents. A camera and an IMU are especially interesting
sensors in combination as they have complementary features.

An IMU provides high-frequency motion information, which is accu­
rate at short intervals of time but drifts over time. Instead, a camera provides
images at smaller frequencies but allows for accurate estimations of the mo­
tion long term. In the last decade, multiple real-time and highly- accurate
VIO algorithms have been developed such as. [13], [9]. Unfortunately, these
systems have nowadays two limitations that we want to address in this thesis,
which we detail below.

1.1.1 Improve Unobservability of Inertial

As proved in [54], VINS (Visual Inertial Navigation System) has two
more unobservable DOF (Degree of Freedom) besides 3 DOFs translation
and the rotation around the gravity direction. These two new unobservable
directions are scale direction and all 3 DOF of orientation if and only if VINS
is under restricted movements i.e. constant acceleration and no rotation.
These types of movements are typical on the ground vehicle, which leads
to a significant reduction regarding accuracy in localization systems using
IMU in this type of robot. To this limitation, we want to introduce the
new approach of initialization and fusing scheme in which we can resolve the
unobservability of IMU in VINS of the ground vehicles in general and mobile
robots in particular.

1.1.2 Enhance in Dynamic Environment

Most of the Visual SLAM (Simultaneous Localization and Mapping)
is based on the static world assumption where all objects are static. How­
ever, the robot has faced with high intensity dynamic objects around it;
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consequently the static world assumption is no longer held. The dynamic
environment affects badly to the accuracy of the SLAM. To overcome this
limitation, we introduced a new thread in our system that detects moving
objects by semantics segmentation and removes them from the map.

1.2 Approach

In the aspect to address these limitations, we introduce the new multi­
-sensor modular SLAM system that cooperates tightly-coupled three typical
sensors existing in the mobile robot which are the camera, IMU and wheel
odometry to achieve accuracy robot state estimation using the restricted re­
source CPU (Central Processing Unit).

To achieve real-time performance, the proposed system includes the
front-end and back-end parts. The front-end part is used to handle the com­
ing sensors data and predict the current state of the robot. We first extract
the features in the new receiving frame, match, and triangulate them with
features extracted from the last frame. We then perform the factor-graph op­
timization along with the preintegration measurement from IMU and wheel
odometry. Due to the restriction on time-processing, the optimization in
the front-end will only try to refine the robot pose with fixed landmarks
position, also known as Motion-only BA (Bundle Adjustment) approach.
Additionally, we implemented the well-parallelized scheme in the front-end
so that the system will take advantage of multi-core CPU processing and
therefore optimize the time-consuming. The front-end also decided to create
a new keyframe based on optical principles and time differences with the
last keyframe. Back-end will be run in a parallel thread with front-end, as
soon as, back-end receives new keyframe, the factor graph is generated base
on projection factor and preintegration factors from IMU, wheel odometry
measurements. The new keyframe and old keyframe that sharing common
view will be refined use built factor graph. More detail about the theoretical
and mathematical of the system is described in next chapter.

To improve the initialization of the IMU approach, we adopt the sta­
tionary initialized process. Mobile robots commonly start at a static state,
we implemented a Zero-Velocity Detector using the mean of matched features
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disparity between two consecutive frames, if the robot is not moving, from
that we can estimate the bias of accelerator and gyroscope. The scale ambi­
guity can be recovered by the measurement from wheel odometry. Since we
can assume that the robot is moving on the flat in the beginning, the system
can easily align the gravity direction.

The dynamic environment can be addressed by cooperating with se­
mantic segmentation. For every new keyframe, we will detect the semantic
objects in the original image and register it for the corresponding landmark
and delete it from the map.

1.3 Thesis Outline

Concerning the structure of the thesis, to get an overview of the cur­
rent research state, we will first demonstrate a review of the related work in
the field of Visual SLAM, the fusing technique with other types of sensors
for state estimate. Next, we will present the theoretical and mathematical
background of our approach along with the detailed implementation of our
SLAM system. Then, we will illustrate the evaluation of our approach in
terms of accuracy, processing time and robustness and compare them with
the state-of-the-art. The final chapter dedicates to discussion, future im­
provements and the conclusion of our thesis.
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1.4 Literature Review

1.4.1 Visual Odometry/SLAM

In this section, we focus on visual odometry/SLAM works, that can
be segmented by its way of process input image from camera: indirect or di­
rect method. The indirect method is the method that invokes several steps,
first extracting features such as points, lines or even objects in the image;
then matching or tracking with the corresponding sequential of images, from
which we can estimate the camera motion. While the tracking step maintains
the local map consistency, loop-closure detection and correction provide the
global map consistency. However, the complexity of the optimization problem
significantly increases as the number of optimization variables is unbounded.
The way to tackle this challenge is keyframe-based approach [28], [20]. As
proven by Strasdat et al., keeping as many landmarks as possible and contin­
uously removing removes redundancy frames is the most efficient approach
for large scale Visual SLAM. It means that the system only builds a map out
of some selective frames - keyframes, to avoid redundancy data; moreover,
by optimizing keyframes, the optimisation problem is more generalized, and
produces a more consistent map as the solution of optimization. From the
early era of Visual SLAM, the indirect method with a keyframe approach
has shown its advantage over the other method.

PTAM [20] is one of the earliest, by not only using an indirect method
but also introducing the parallel threads for camera tracking and local map­
ping, which contributes to the real-time AR application in the small room.
Later, in the improving version [21], the point feature cooperates with the
line feature and rotation estimation are implemented and show improvement
in term of accuracy. PTAM uses FAST [40] corner detection for feature
extraction and matching by patch correlation, however, by this matching
method feature can not be used for loop-closure detection, it is stated to
the fact that PTAM does not support loop-closure. Strasdat et al. proposes
large scale monocular SLAM where front-end based on optical flow with fea­
ture matching, back-end performs sliding-window BA, the main contributes
of this work is the loop-closure is solved by pose graph optimization with
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similarity factor - 7 DOF, allows to recover the scale factor and reduce drift
significantly when perform the loop correction. This contribution is adopted
by most of later work and appears in very state-of-the-art system. Mur-Ar­
tal et al. presents the most complete and reliable monocular SLAM systems
- ORB-SLAM that shows exceptional result. ORB-SLAM [32] incorporates
three threads that run parallel: tracking, local mapping, and loop closing.
The system chooses ORB [41] because of its efficient extraction time and high
quality of place recognition. The tracking thread is in charge of localizing the
camera with every frame and deciding when to insert a new keyframe. OR­
B-SLAM initializes system by 8-point algorithm [18], if bootstrap successful,
this thread performs feature matching with the previous frame and optimizes
the pose using motion-only BA. If the tracking is lost (e.g., due to occlusions
or abrupt movements), bag-of-words [15] library is used to perform relocaliza­
tion in the global map. Local mapping processes new keyframes and performs
local BA to achieve an optimal reconstruction in the camera pose’s surround­
ings. Difference from the previous works, ORB-SLAM build the local BA
based on neighbour covisibility of new keyframe rather than sliding-window
keyframes, this helps local BA can maximize the optimizing candidates on
every BA. Local mapping creates new map points from unmatched features
that later based on new information from the tracking thread those map point
can be culled to maintain high-quality measurements, it is also in charge of
culling redundant keyframes. The loop closing searches for loops with every
new keyframe. If a loop is detected, we compute a similarity transformation
that informs about the drift accumulated in the loop. Then the loop will be
corrected and duplicated landmarks are fused. In the improvement version
namely ORB-SLAM2 [30] supports stereo and RGB-D camera with more
robustness and suitable for large scale application.

Beside indirect method, visual odometry/SLAM can also base on di­
rect method which monitors the changes of pixel intensity in the image, so
that it skips the extract feature step. It leads to the advantage of direct
method is very fast, can over the real-time threshold (30 Fps). However, also
because of rely on pixel intensity, direct method can be sensitive with illumi­
nation changing and due to no features using, it needs a new approach for

12



place recognition and extra work on camera calibration. The noticeable di­
rect method is DSO [11] which performs photometric BA to optimize camera
intrinsic and inverse depths of sparse landmarks in a sliding window.

In the middle ways of the direct and indirect method is the semi-direct
method, which collaborates advantages of both in the system and most know
by project SVO [12]. It performs direct sparse image alignment to estimate
the camera pose and only extracts features correspondences to the initial
guess. Back-end performs geometric BA instead of photometric to refine the
camera pose and map.

1.4.2 Visual-Inertial Odometry/SLAM

In this section, we discuss about VIO/SLAM that categorizes by
the type of back-end: filtering-based or optimization-based method. Fil­
tering-based method is one of the earliest method for state estimation, ini­
tial work is base on EKF (Extended Kalman Filter) [45]. To avoid the the
quadratic complexity of EKF method, the MSCKF (Multi-State Constraint
Kalman Filter) is introduced by Mourikis and Roumeliotis, in which avoids to
include landmark measurement into state, consequently, it contributes to the
significantly decrease number of state variable. ROVIO (Robust Visual Iner­
tial Odometry) [4], [5] open-source framework is VINS framework with fron­
t-end direct method and back-end implements MSCKF, have achieved the
high accuracy and robust in localization result. The excellent open-source
OpenVINS [16] code-base is one most complete work of VINS filter-based
MSCKF method with front-end uses KLT (Kanade Lucas Tomasi) feature
tracker [27], [50] or descriptor-based matching, in addition, OpenVINS sup­
ports many usefull and reusable features that help leveraging performance
in real-world application: static/dynamic initialization, camera-imu intrin­
sic/extrinsic calibration, zero-velocity detection/update, etc. The main con­
tribution to research community of OpenVINS is comprehensive documenta­
tion1, derivation and highly reusable code-base2.

1https://docs.openvins.com/pages.html
2https://github.com/rpng/open_vins
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Optimization-based method formulates the problem in the form of
a non-linear energy function, which is continuously optimized in the back­
-end. To facilitate this, it usually go with keyframe selection scheme that
constraint the complexity of optimization problem. The first tightly-cou­
ple visual and inertial odometry non-linear optimization method is OKVIS
(Open Keyframe-based Visual-Inertial SLAM) [23], [24], [25]. Inspired by
OKVIS, VINS-Mono [33], [34] is develop a robust and versatile monocular
VINS uses an optimization-based sliding window fashion for perform high­
-accuracy visual-inertial odometry. It features efficient IMU pre-integration
by Forster et al. with bias correction, automatic estimator initialization, on­
line extrinsic calibration, failure detection and recovery, loop detection using
bag-of-words [15], and global 4 DOF pose graph optimization, map merge,
pose graph reuse, online temporal calibration, rolling shutter support. The
extend work is VINS-Fusion [35], [36] supporting stereo camera, achieves the
state-of-the-art accuracy and becomes standard for evaluating VINS frame­
work. Basalt [51] is stereo-inertial framework, exploits the non-linear factor
from visual-inertial odometry and adds into factor graph optimization. For
marginalization, instead of using Schur complement, Usenko et al. imple­
mented the square root marginalization [10] assured numerical stability and
faster than baseline, features with multi-core CPU running uses TBB (Thread
Building Block) library [38], Basalt reaches up-to 100 Fps, as knowledge of
us it is one of the fastest open-source feature-based SLAM. Kimera [39] is an
excellent open-source metric-semantic SLAM framework, in which Rosinol
et al. focuses on building a semantic map that allows robot understands and
interprets human-level command in the task of navigation while rendering
the similar localization accuracy to VINS-Fusion. Both Basalt and Kimera
base on fairy naive inertial initialization strategy; they assume robot starts
at stationary state and perform static initialization, along with gravity align­
ment. In constrast, ORB-SLAM3 [9] implements the novel, fast optimiza­
tion-based inertial initialization proposing by Campos et al. [8] that tightly
couple initializes bias and gravity direction with visual odometry, as result
it obtain 5% error after only 2 seconds and up-to only 1% after 15 seconds.
Beside the novel inertial initialization, inheriting front-end from previous
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work [30], [32] and reuse map from [31], ORB-SLAM3 presents one of the
most complete Visual-Inertial SLAM framework that is able to perform ful­
l-term data associate, including: short-term (map points matching with new
receiving frame), mid-term (map points matching and optimizing in covisi­
bility graph) and long-term (relocalization, loop-closure and map merging).
These features all contribute to the current state-of-the-art Visual-Inertial
SLAM, our work relies on ORB-SLAM3 due to its comprehensive. The most
recent noticeable work is DM-VIO [52] is a monocular inertial SLAM with
direct-method front-end from [11], von Stumberg and Cremers proposed de­
lay-marginalization strategy allows to continuously optimize the scale and
gravity direction even after IMU initialization, DM-VIO yields scale error
smaller than 1% in EuRoC [7], TUM-VI [43] datasets, moreover, DM-VIO
even out-performs ORB-SLAM3 and Basalt in 4season dataset [53], by used
only monocular inertial sensors and without loop-closure.

1.4.3 Visual SLAM in Dynamic Environment

The main idea for tackling dynamic environments in visual SLAM is
using semantic segmentation or object detectors to label dynamic objects like
cars, people, bikes, etc. We then remove the extracted points that belong
to the region labeled. Research related to the problem is significantly rising
in recent years, there are vast semantic segmentation models that can be
implemented in visual SLAM systems. For instance, Mask R-CNN [19] is
used in [42], [2], [57]. Although the high-weighted models like Mask R-CNN
gave excellent results in labelling and removing dynamic objects, they have
a high impact on the system processing time; consequently, visual SLAM
can not achieve the real-time operation. On the other hand, SegNet [1] is
a lightweight convolutional network for image semantic segmentation and
achieves processing of 33 (ms) per frame in our experiments so that it can
guarantee real-time operation application. DS-SLAM [56] uses semantic seg­
mentation model (SegNet [1]), along with moving consistency check and is
based on ORB-SLAM2 [30]. Dre-SLAM [55] employs an object detection
model (YOLO [37]) along with the K-means clustering method for segmenta­
tion over the depth data from the RGB-D sensor. Detect-SLAM [59] uses a
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DNN-based object detector, along with propagating probabilities of features
(probability of detecting this feature on a moving object).
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2 Problem Statement

2.1 Robot State Vector

In this thesis, we develop the SLAM system for the mobile robot which
contains three common sensors: optical, inertial and wheel odometry, so we
formulate our problem as the estimating the state of an agent (e.g a mobile
robot), equipped with an IMU (frame “I”), a monocular camera (frame “C”)
and a wheel odometer (frame “O”).

An IMU produces smooth measurements with noise but little outliers
which can make its estimate very accurate as long as the bias drift can be
well-constrained by other sensors. Therefore, our system is designed around
the IMU as the primary sensor; it means that we consider frame “I” to coincide
with the body frame “B” of the agent, which is the desired state frame that
we want to estimate, illustrated in Fig. 2.1. These three frame is fixed in the
robot body, all the transformations between these trio-sensors are assumed
to be constant and known from prior calibration and are denoted as:

— TBC = [RBC|pBC] - The transformation from camera “C” to body
frame “B”.

— TBO = [RBO|pBO] - The transformation from wheel odometer “O” to
body frame “B”.

Figure 2.1 — The frame system uses in the thesis

These transformation is estimated by SE(3) Umeyama alignment
method with given set of trajectory that estimated from each sensor indi­
vidually, more detail and work-through calibration will be described in later
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sections. The ultimate goal of Visual-Inertial-Wheel State Estimation is to es­
timate the state of body frame w.r.t to world frame “W” - TWB = [RWB|pWB]

from the sensors measurement. At the time i, the state of the robot x𝑖 is
described in the IMU frame

x𝑖 = [R𝑖,p𝑖] (2.1)

Where:

— Pose [R𝑖|p𝑖] is presented as SE(3) in which R𝑖 ∈ SO(3) is the rotation
matrix and p𝑖 ∈ R3 is linear translation at time i.

2.2 Sensor Model

We denote the IMU measurement as ℐ𝑖𝑗. The IMU measurement ℐ𝑖𝑗
is the set of measurement between keyframe 𝒦i and 𝒦j and the measurement
between two consecutive 𝑖; 𝑖+1 determined by the preintegrated on-manifold
technique in [13]. The wheel odometer provides the absolute robot’s pose at
time i and is denoted by 𝒪i, we also perform preintegration to determined
wheel odometric measurement out of two consecutive 𝒦i and 𝒦j.

By using Pose Graph Optimization, we optimize the residual error
and update the robot state with given the optical, IMU and wheel odometer
measurement.

2.2.1 Optical Sensor

An optical sensor is usually a monocular camera or stereo camera. We
assume that camera can be correctly model by pinhole model, the optical sen­
sor should calibrate to correct distortion and estimate its intrinsic parameters
before using it for further application. Undistortion lens and intrinsic param­
eters are computed by optimizing reprojection errors on several images with
known calibration patterns. With respect to camera coordinate C, Z-axis is
forward, X-axis is horizontal to right side and Y-axis is vertical downward.
Each optical frame observes multi-landmarks l ; the measurement of the op­
tical sensor formulates as the pixel coordinate of the observed landmarks on
2D image plane coordinate P. The mapping formulation 3D landmark from
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world coordinate to camera coordinate

l𝑐i = R𝑇 li − p =

⎡⎢⎢⎣
𝑋

𝑌

𝑍

⎤⎥⎥⎦ (2.2)

where [R|p] ∈ SE(3) is the camera pose in world coordinate. The formula­
tion reprojects 3D landmarks in world coordinates into 2D pixel in camera
coordinate, is difference between monocular and stereo camera. Give posi­
tion of 3D landmark i in world coordinate as li ∈ R3, we denote its position
in camera coordinate as l𝑐i ∈ R3. Reprojection formulation 𝜋𝑚 of monocular
camera that mapping 3D map points li to 2D pixel coordinates x ∈ R2 on
the image plane R3 ↦→ R2:

x =

[︃
𝑢

𝑣

]︃
= 𝜋𝑚 (l𝑐i ) + 𝜂x =

[︃
𝑓𝑥

𝑋
𝑍 + 𝑐𝑥

𝑓𝑦
𝑌
𝑍 + 𝑐𝑦

]︃
+ 𝜂x (2.3)

where:

— [𝑢 𝑣]𝑇 is horizontal and vertical coordinate in image plane.
— 𝑓𝑥, 𝑓𝑦 are camera focal length in X and Y-axis.
— 𝑐𝑥, 𝑐𝑦 are coordinate of camera principle point, which are the point

on the image plane onto which the perspective center is projected.
— 𝜂x ∼ 𝒩

(︀
0, 𝜎2

𝑢I2
)︀

is the projection uncertainty (𝜎𝑢 is the covariance
from ORB pyramid level on which the feature is located)

In stereo cases, it consists of two rigidly attached frames left and
right. One frame of stereo can estimate depth by finding a correspond be­
tween the left and right images. Calibration performs to estimate not only
intrinsic parameters but also rectify parameters. Rectification process aligns
left, right images so that the epipolar line is horizontal. Once the rectified,
the corresponds features in the left image are on the same row in the right
image. Moreover, stereo-rectified has left and right camera with the same
focal length and principal point. The reprojection formulation 𝜋𝑠 of rectified
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stereo camera R3 ↦→ R3:

x =

⎡⎢⎢⎣
𝑢𝐿

𝑣𝐿

𝑢𝑅

⎤⎥⎥⎦ = 𝜋𝑠 (l𝑐i ) =

⎡⎢⎢⎣
𝑓𝑥

𝑋
𝑍 + 𝑐𝑥

𝑓𝑦
𝑌
𝑍 + 𝑐𝑦

𝑓𝑥
𝑋−𝑏
𝑍 + 𝑐𝑥

⎤⎥⎥⎦ (2.4)

where

— [𝑢𝐿 𝑣𝐿]
𝑇 is horizontal and vertical coordinate in left image plane.

— 𝑢𝑅 is horizontal coordinate in right image plane, vertical 𝑣𝑅 should
equal to 𝑣𝐿 after rectified.

— 𝑏 is baseline - horizontal distance between left and right camera.
— 𝑓𝑥, 𝑓𝑦 are camera focal length in X and Y-axis after rectified.
— 𝑐𝑥, 𝑐𝑦 are coordinate of camera principle point after rectified.
— 𝜂x ∼ 𝒩

(︀
0, 𝜎2

𝑢I3
)︀

is the projection uncertainty (𝜎𝑢 is the covariance
from ORB pyramid level on which the feature is located)

Henceforth, the symbol stands for the reprojection of 3D landmarks onto the
image plane for both monocular and stereo camera cases.

2.2.2 IMU

IMU provides measurement model as linear acceleration 𝑎̃𝐵 and angu­
lar velocity 𝜔̃𝐵 at high-frequency approximate hundreds of Hezts. However,
these measurements are disturbed by the bias of the accelerometer - 𝑏𝑎 and
gyrocopter - 𝑏𝑔. They are the combination of static and dynamic bias which
is produced by temperature variation, vibration, pressure etc. The raw mea­
surement model at time t formulates as:

𝜔̃𝐵(𝑡) = 𝜔𝐵(𝑡) + b𝑔(𝑡)

ã𝐵(𝑡) = R⊤WB(𝑡) (a𝐵(𝑡)− gw) + b𝑎(𝑡)
(2.5)

Where

— [RWB|pWB] - the transformation from sensor to world coordinates at
time i.

— 𝜔𝐵(𝑡) is the actual angular velocity measurement.
— 𝑎𝐵(𝑡) is the actual linear acceleration measurement.
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— gw is the gravity vector in world coordinates.

The sate of IMU sensor ℐ at time i is described

ℐ𝑖 = [R𝑖,p𝑖,v𝑖,b𝑖] (2.6)

where

— [R𝑖|p𝑖] ∈ SE(3) is the pose of sensor.
— 𝑣𝑖 ∈ R3 is linear velocity.
— 𝑏 ∈ R6 is the bias for accelerometer and gyrocopter is 3D vector for

each.

Integrating formula 2.5, we get the state vector of the IMU in the discrete
time domain; more specifically at the 𝑘 + 1 measurement with interval ∆𝑡

from previous measurement 𝑘, the state vector is calculated according to the
following formula

R𝑘+1
WB = R𝑘

WB Exp
(︀(︀
𝜔𝑘

B − 𝑏𝑘𝑔
)︀
∆𝑡

)︀
v𝑘+1
B = v𝑘

B + gW∆𝑡+R𝑘
WB

(︀
𝑎𝑘
B − 𝑏𝑘𝑎

)︀
∆𝑡

p𝑘+1
WB = p𝑘

WB + v𝑘
B∆𝑡+

1

2
gW∆𝑡2 +

1

2
R𝑘

WB

(︀
𝑎𝑘
B − 𝑏𝑘𝑎

)︀
∆𝑡2

(2.7)

2.2.3 Wheel Odometry

The wheel odometry measurement model is simpler than the optical
sensor and IMU. The modern wheel odometry on a mobile robot usually
provides the odometry directly. In addition, the white noise - 𝜂 introduced
in the measurement due to slippage, hardware error etc. The raw angle
rotation 𝑘 measurement 𝜑𝑘 ∈ R and translation p̃𝑘 ∈ R2

𝜑𝑘 = 𝜑𝑘 + 𝜂𝜑
𝑘

p̃𝑘 = p𝑘 + 𝜂p
𝑘

(2.8)
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3 Background Theory

3.1 Lie Group Preliminary

In this section, we briefly provide some essential Lie Group and Lie
Algebra properties that will useful later on.

Special Orthogonal Group - SO(3) is the group of 3-D rotation with
formally defined as

SO(3) =
{︀
R ∈ R3×3,R⊤R = I, det(𝑅) = 1

}︀
(3.1)

The tangent space of to the SO(3) (at the identity) is called as Lie Algebra,
denoted as so(3) and can be found by taking the time derivative of R⊤R =

I, yield: R⊤Ṙ = −
(︁
R⊤Ṙ

)︁⊤
. It reveals that R⊤Ṙ is the skew-symmetric

matrix, which is defined as:

[𝜔]× = 𝜔∧ =

⎡⎢⎢⎣
𝜔1

𝜔2

𝜔3

⎤⎥⎥⎦
∧

=

⎡⎢⎢⎣
0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0

⎤⎥⎥⎦ ∈ so(3) (3.2)

At the identity (R = I), we obtain Ṙ = [𝜔]×, it proofs that [𝜔]× is in so(3).
We map from so(3) to R3 and vice versa by linear operator hat and vee:

Hat: R3 → so(3); 𝜔 ↦→ 𝜔∧ = [𝜔]×

Vee: so(3)→ R3 ; [𝜔]× ↦→ [𝜔]∨× = 𝜔

The property of skew-symmetric matrices that can be useful later is

a∧b = −b∧a ∀a,b ∈ R3 (3.3)

The exponential map is exp : so(3) ↦→ SO(3) converts elements of
the Lie Algebra into elements of the group, according to Rodrigues formula:

exp (𝜑∧) = I+
sin(‖𝜑‖)
‖𝜑‖

𝜑∧ +
1− cos(‖𝜑‖)
‖𝜑‖2

(︀
𝜑∧

)︀2 (3.4)

The first-order approximation of exponential map:

exp (𝜑∧) ≃ I+ 𝜑∧ (3.5)
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The logarithm map is log : SO(3) ↦→ so(3) exactly the invert of the
exponential map, convert the elements of the group into Lie Algebra

log(R) =
𝜙 ·

(︀
R− R⊤

)︀
2 sin(𝜙)

with 𝜙 = cos−1
(︂
tr(R)− 1

2

)︂
(3.6)

We adopted the “vectorized" notation version of exp and log in [13]
for the sake of simplicity:

Exp : R3 → SO(3); 𝜑 ↦→ exp
(︀
𝜑∧

)︀
Log : SO(3)→ R3 ; R ↦→ log(R)∨

A useful first-order approximation of Exp:

Exp(𝜑+ 𝛿𝜑) ≈ Exp(𝜑) Exp (J𝑟(𝜑)𝛿𝜑) (3.7)

where J𝑟(𝜑) is the Right Jacobian on Lie Group

J𝑟(𝜑) = I− 1− cos(‖𝜑‖)
‖𝜑‖2

𝜑∧ +
‖𝜑‖ − sin(‖𝜑‖)

‖𝜑3‖
(𝜑∧)

2 (3.8)

A similar approximation is also held for Log

Log(Exp(𝜑) Exp(𝛿𝜑)) ≈ 𝜑+ J−1𝑟 (𝜑)𝛿𝜑 (3.9)

where J−1𝑟 (𝜑) is the inverse of Right Jacobian

J−1𝑟 (𝜑) = I+
1

2
𝜑∧ +

(︂
1

‖𝜑‖2
+

1 + cos(‖𝜑‖)
2‖𝜑‖ sin(‖𝜑‖)

)︂
(𝜑∧)

2 (3.10)

Another useful property of Exp

RExp(𝜑)R⊤ = Exp
(︀
R𝜑∧R⊤

)︀
= Exp(R𝜑)

⇔ Exp(𝜑)R = RExp
(︀
R⊤𝜑

)︀ (3.11)
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3.2 Visual-Inertial Fusion

3.2.1 IMU Preintegration Factor

Residual Errors

The IMU preintegration measurement ∆ℐij =
[︁
∆R̃⊤ij ,∆ṽ⊤ij ,∆p̃⊤ij

]︁⊤
∈

R9 between keyframe i and j is determined as

∆R̃ij = R̃⊤𝑖 R̃𝑗 Exp (𝛿𝜑ij)

∆ṽij = R̃⊤𝑖 (ṽ𝑗 − ṽ𝑖 − g∆𝑡ij) + 𝛿vij

∆p̃ij = R̃⊤𝑖

(︂
p̃𝑗 − p̃𝑖 − ṽ𝑖∆𝑡ij −

1

2
g∆𝑡2ij

)︂
+ 𝛿pij

(3.12)

where

— ∆R̃ij,∆ṽij,∆p̃ij are the preintegrated rotation, velocity and position
measurement.

— R̃𝑖,R̃𝑗 ∈ SO(3) are the rotation measured from IMU at keyframe i
and j.

— ṽ𝑖,ṽ𝑗 ∈ R3 are the velocity measured from IMU at keyframe i and j.
— p̃𝑖,p̃𝑗 ∈ R3 are the position measured from IMU at keyframe i and j.
— 𝛿𝜑ij, 𝛿vij, 𝛿pij ∈ R3 are the “random" noise of preintegrated rotation,

velocity and position measurement.
— g = [0,0,9.81]⊤ is the gravity vector in world frame.
— ∆𝑡ij is the time difference between keyframe i and j.

In general, the IMU preintegration are written as a function of the
(to-be-estimated) state “plus” a random noise, described by [𝛿𝜑ij, 𝛿vij, 𝛿pij]

⊤.
For more details of mathematical underneath, please reference to original
paper [13].

Given the IMU preintegration measurement (3.12), we can compute

the IMU factor residual error rℐij =
[︁
r⊤ΔRij

, r⊤Δvij
,r⊤Δpij

]︁⊤
∈ R9 between two

consecutive keyframe i and j

rΔRij
= Log

(︁
∆R̃⊤ijR

⊤
𝑖 R𝑗

)︁
rΔvij

= R⊤𝑖 (v𝑗 − v𝑖 − g∆𝑡ij)−∆ṽij

rΔpij
= R⊤𝑖

(︂
p𝑗 − p𝑖 − v𝑖∆𝑡ij −

1

2
g∆𝑡2ij

)︂
−∆p̃ij

(3.13)
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where

— rΔRij
, rΔvij

,rΔpij
are the residual error vector of rotation, velocity and

position.
— R𝑖,R𝑗 ∈ SO(3) are the rotation from body frame “B” to world frame

“W” of keyframe i and j.
— v𝑖,v𝑗 ∈ R3 are the velocity from body frame “B” to world frame “W”

of keyframe i and j.
— p𝑖,p𝑗 ∈ R3 are the translation from body frame “B” to world frame

“W” of keyframe i and j.

Jacobian of Residual Errors

In this section, we present the analytical expression for the Jacobian
of the IMU Preintegrated Factor. All the derivative model in this work is
computed by Perturbation Model where we add a small disturbance into
residual error (3.13):

R𝑖 ← R𝑖 Exp (𝛿𝜑𝑖) , R𝑗 ← R𝑗 Exp
(︀
𝛿𝜑𝑗

)︀
p𝑖 ← p𝑖 +R𝑖𝛿p𝑖, p𝑗 ← p𝑗 +R𝑗𝛿p𝑗

v𝑖 ← v𝑖 + 𝛿v𝑖, v𝑗 ← v𝑗 + 𝛿v𝑖

𝛿b𝑔
𝑖 ← 𝛿b𝑔

𝑖 + 𝛿b𝑔
𝑖 , 𝛿b𝑎

𝑖 ← 𝛿b𝑎
𝑖 + 𝛿b𝑎

𝑖

(3.14)

— Jacobian of rΔRij
: We note that p𝑖,p𝑗,v𝑖,v𝑗, 𝛿b

𝑎
𝑖 do not appear in

the expression of rΔRij
, hence, its correspond Jacobian equals to zero. The

remaining Jacobian is computed as following:
We perturb Ri by Exp (𝛿𝜑𝑖), the change of rΔRij

relative to this disturbance
is

rΔRij
(R𝑖 Exp (𝛿𝜑𝑖)) = Log

(︁
∆R̃⊤ij (R𝑖 Exp (𝛿𝜑𝑖))

⊤R𝑗

)︁
= Log

(︁
∆R̃⊤ij Exp (−𝛿𝜑𝑖) R

⊤
𝑖 R𝑗

)︁
(3.11)
= Log

(︁
∆R̃⊤ijR

⊤
𝑖 R𝑗 Exp

(︀
−R⊤𝑗 R𝑖𝛿𝜑𝑖

)︀)︁
(3.9)
≃ rΔR𝑖𝑗

(R𝑖)− J−1𝑟 (rΔR (R𝑖)) R
⊤
𝑗 R𝑖𝛿𝜑𝑖

(3.15)

25



From (3.15), we can compute the Jacobian w.r.t rotation 𝜑𝑖 of keyframe 𝒦i

𝜕rΔR𝑖𝑗

𝜕𝜑𝑖

= lim
𝛿𝜑𝑖→0

rΔRij
(R𝑖 Exp (𝛿𝜑𝑖))− rΔRij

(R𝑖)

𝛿𝜑𝑖

(3.15)
= −J−1𝑟

(︀
rΔR𝑖𝑗

(R𝑖)
)︀
R⊤𝑗 R𝑖

(3.16)

We perturb Rj by Exp
(︀
𝛿𝜑𝑗

)︀
, the change of rΔRij

relative to this disturbance
is

rΔRij

(︀
R𝑗 Exp

(︀
𝛿𝜑𝑗

)︀)︀
= Log

(︁
∆R̃⊤ijR

⊤
𝑖

(︀
R𝑗 Exp

(︀
𝛿𝜑𝑗

)︀)︀)︁
(3.9)
≃ rΔR (R𝑗) + J−1𝑟 (rΔR (R𝑗)) 𝛿𝜑𝑗

(3.17)

Similar to (3.16), we obtain the Jacobian w.r.t rotation 𝜑𝑗 of keyframe 𝒦j

𝜕rΔR𝑖𝑗

𝜕𝜑𝑗

= lim
𝛿𝜑𝑗→0

rΔRij

(︀
R𝑗 Exp

(︀
𝛿𝜑𝑗

)︀)︀
− rΔRij

(R𝑗)

𝛿𝜑𝑗

(3.17)
= J−1𝑟 (rΔR (R𝑗))

(3.18)

In summary, the Jacobian of rΔR𝑖𝑗
are

𝜕rΔRij

𝜕𝜑𝑖

= −J−1𝑟 (rΔR (R𝑖)) R
T
𝑗 R𝑖

𝜕rΔRij

𝜕𝜑𝑗

= J−1𝑟 (rΔR (R𝑗))

𝜕rΔRij

𝜕v𝑖
= 0

𝜕rΔRij

𝜕v𝑗
= 0

𝜕rΔRij

𝜕p𝑖
= 0

𝜕rΔRij

𝜕p𝑗
= 0

(3.19)

— Jacobian of rΔvij
: As previous, the terms 𝜑𝑗,p𝑖,p𝑗 are not appear in

rΔvij
expression, so the Jacobian w.r.t to them equal to zero. We add the

perturb the remaining terms and obtains:

rΔvij
(v𝑖 + 𝛿v𝑖) = R⊤𝑖 (v𝑗 − v𝑖 − 𝛿v𝑖 − g∆𝑡ij)

= rΔvij
(v𝑖)− R⊤𝑖 𝛿v𝑖

(3.20)

rΔvij
(v𝑗 + 𝛿v𝑗) = R⊤𝑖 (v𝑗 + 𝛿v𝑗 − v𝑖 − g∆𝑡ij)

= rΔvij
(v𝑗) + R⊤𝑖 𝛿v𝑗

(3.21)

rΔvij
(R𝑖 Exp (𝛿𝜑𝑖)) = (R𝑖 Exp (𝛿𝜑𝑖))

⊤ (v𝑗 − v𝑖 − g∆𝑡ij)

(3.5)
≃ (I− 𝛿𝜑∧𝑖 ) R

⊤
𝑖 (v𝑗 − v𝑖 − g∆𝑡ij)

(3.3)
= rΔvij

(R𝑖) +
(︀
R⊤𝑖 (v𝑗 − v𝑖 − g∆𝑡ij)

)︀∧
𝛿𝜑𝑖

(3.22)

26



We determine the Jacobian w.r.t to 𝜑𝑖,v𝑖,v𝑗 as following

𝜕rΔv𝑖𝑗

𝜕v𝑖
= lim

𝛿v𝑖→0

rΔvij
(v𝑖 + 𝛿v𝑖)− rΔvij

(v𝑖)

𝛿v𝑖

(3.20)
= −R⊤𝑖

(3.23)

𝜕rΔv𝑖𝑗

𝜕v𝑗
= lim

𝛿v𝑗→0

rΔvij
(v𝑗 + 𝛿v𝑗)− rΔvij

(v𝑗)

𝛿v𝑗

(3.21)
= R⊤𝑖

(3.24)

𝜕rΔv𝑖𝑗

𝜕𝜑𝑖

= lim
𝛿𝜑𝑖→0

rΔvij
(R𝑖 Exp (𝛿𝜑𝑖))− rΔvij

(R𝑖)

𝛿𝜑𝑖

(3.22)
=

(︀
R⊤𝑖 (v𝑗 − v𝑖 − g∆𝑡ij)

)︀∧ (3.25)

In summary, the Jacobian of rΔvij
are

𝜕rΔvij

𝜕𝜑𝑖

=
(︀
R⊤𝑖 (v𝑗 − v𝑖 − g∆𝑡ij)

)︀∧ 𝜕rΔvij

𝜕𝜑𝑗

= 0

𝜕rΔvij

𝜕p𝑖
= 0

𝜕rΔvij

𝜕p𝑗
= 0

𝜕rΔvij

𝜕v𝑖
= −R⊤𝑖

𝜕rΔvij

𝜕v𝑗
= R⊤𝑖

(3.26)

— Jacobian of rΔpij
: R𝑗 and v𝑗 are not appear in rΔpij

, hence, Jacobian
w.r.t to 𝛿𝜑𝑗 and 𝛿v𝑗 are zero. Similar to previous, we perturb rΔpij

by the
remaining terms

rΔpij
(p𝑖 +R𝑖𝛿p𝑖) = R⊤𝑖

(︂
p𝑗 − p𝑖 − R𝑖𝛿p𝑖 − v𝑖∆𝑡ij −

1

2
g∆𝑡2ij

)︂
= rΔpij

(p𝑖) + (−I3×1) 𝛿p𝑖

(3.27)

rΔpij
(p𝑗 +R𝑗𝛿p𝑗) = R⊤𝑖

(︂
p𝑗 +R𝑗𝛿p𝑗 − p𝑖 − v𝑖∆𝑡ij −

1

2
g∆𝑡2ij

)︂
= rΔpij

(p𝑗) +
(︀
R⊤𝑖 R𝑗

)︀
𝛿p𝑗

(3.28)

rΔpij
(v𝑖 + 𝛿v𝑖) = R⊤𝑖

(︂
p𝑗 − p𝑖 − v𝑖∆𝑡ij − 𝛿v𝑖∆𝑡ij −

1

2
g∆𝑡2ij

)︂
= rΔpij

(v𝑖) +
(︀
−R⊤𝑖 ∆𝑡ij

)︀
𝛿v𝑖

(3.29)
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rΔpij (R𝑖 Exp (𝛿𝜑𝑖)) = (R𝑖 Exp (𝛿𝜑𝑖))
⊤
(︂
p𝑗 − p𝑖 − v𝑖∆𝑡ij −

1

2
g∆𝑡2ij

)︂
(3.5)
≃

(︀
I− 𝛿𝜑∧𝑖

)︀
R⊤𝑖

(︂
p𝑗 − p𝑖 − v𝑖∆𝑡ij −

1

2
g∆𝑡2ij

)︂
(3.3)
= rΔpij

(R𝑖) +

(︂
R⊤𝑖

(︂
p𝑗 − p𝑖 − v𝑖∆𝑡ij −

1

2
g∆𝑡2ij

)︂)︂∧
𝛿𝜑𝑖

(3.30)
Then the Jacobian w.r.t to p𝑖 ,p𝑗 ,𝜑𝑖 can be found

𝜕rΔp𝑖𝑗

𝜕p𝑖
= lim

𝛿p𝑖→0

rΔpij
(p𝑖 +R𝑖𝛿p𝑖)− rΔpij

(p𝑖)

𝛿p𝑖

(3.27)
= −I3×1

(3.31)

𝜕rΔp𝑖𝑗

𝜕p𝑗
= lim

𝛿p𝑗→0

rΔpij
(p𝑗 +R𝑗𝛿p𝑗)− rΔpij

(p𝑗)

𝛿p𝑗

(3.28)
= R⊤𝑖 R𝑗

(3.32)

𝜕rΔp𝑖𝑗

𝜕v𝑖
= lim

𝛿v𝑖→0

rΔvij
(v𝑖 + 𝛿v𝑖)− rΔpij

(v𝑖)

𝛿v𝑖

(3.29)
= −R⊤𝑖 ∆𝑡ij

(3.33)

𝜕rΔp𝑖𝑗

𝜕𝜑𝑖

= lim
𝛿𝜑𝑖→0

rΔpij
(R𝑖 Exp(𝛿𝜑))− rΔpij

(R𝑖)

𝛿𝜑𝑖

(3.30)
=

(︂
R⊤𝑖

(︂
p𝑗 − p𝑖 − v𝑖∆𝑡ij −

1

2
g∆𝑡2ij

)︂)︂∧ (3.34)

In summary, the Jacobian of rΔpij
are

𝜕rΔpij

𝜕𝜑𝑖

=

(︂
R⊤𝑖

(︂
p𝑗 − p𝑖 − v𝑖∆𝑡ij −

1

2
g∆𝑡2ij

)︂)︂∧ 𝜕rΔpij

𝜕𝜑𝑗

= 0

𝜕rΔpij

𝜕v𝑖
= −R⊤𝑖 ∆𝑡ij

𝜕rΔpij

𝜕v𝑗
= 0

𝜕rΔpij

𝜕p𝑖
= −I3×1

𝜕rΔpij

𝜕p𝑗
= R⊤𝑖 R𝑗

(3.35)
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3.2.2 Visual Odometry Factor

Residual Errors

The 3-D coordinates of the landmark 𝑙 in the world coordinate system
(pW) are converted to the 3-D position in camera coordinate (pC):

pC = R⊤BC [pB − tBC]

= R⊤BC
[︀
R⊤WB (pW − pWB)− tBC

]︀ (3.36)

with pB is the landmark position in the body/IMU coordinate.
The 2-D position of landmark in image plane is obtain by the standard

perspective projection

p =

[︃
𝑢

𝑣

]︃
= K · pC

(3.36)
= KR⊤BC

[︀
R⊤WB (pW − pWB)− tBC

]︀ (3.37)

where K ∈ R3×3 is the projection matrix which is depend on camera models.
The residual error of a single image measurement zil is the reprojection

error of landmark 𝑙 on keyframe 𝒦𝑖

r𝒞il = zil − p

(3.37)
= zil −KR⊤BC

[︀
R⊤WB (pW − pWB)− tBC

]︀ (3.38)

Jacobian of Residual Errors

— Jacobian w.r.t pW: we apply chain rule
𝜕r𝒞il
𝜕pW

=
𝜕r𝒞il
𝜕pC

· 𝜕pC

𝜕pW

= − 𝜕p

𝜕pC
·
𝜕
[︀
R⊤BC

[︀
R⊤WB (pW − pWB)− tBC

]︀]︀
𝜕pW

= −𝜋 · R⊤BCR⊤WB

(3.39)

where 𝜋 ∈ R2×3 is the Perspective Projection Jacobian Matrix.
— Jacobian w.r.t Keyframe 𝒦𝑖’s pose TWB = [RWB,pWB]: we apply

chain rule
𝜕r𝒞il
𝜕TWB

=
𝜕r𝒞il
𝜕pC

· 𝜕pC

𝜕TWB

= −𝜋 · 𝜕pC

𝜕TWB

(3.40)
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We can rewrite 𝜕pC

𝜕TWB
as the “vectorized" form

[︁
𝜕pC

𝜕𝜑WB

𝜕pC

𝜕pWB

]︁
and compute

them separately.
Partial derivative w.r.t 𝜑WB: First, we perturb 𝜑WB, the change
of pC relative to these disturbance

pC (RWB Exp (𝛿𝜑WB)) = R⊤BC

[︁
(RWB Exp (𝛿𝜑WB))

⊤ (pW − pWB)− tBC

]︁
= R⊤BC

[︁
Exp (𝛿𝜑WB)

⊤R⊤WB (pW − pWB)− tBC

]︁
(3.5)
≃ R⊤BC

[︀(︀
I− 𝛿𝜑∧WB

)︀
R⊤WB (pW − pWB)− tBC

]︀
= pC (RWB)− R⊤BC𝛿𝜑

∧
WBRWB (pW − pWB)

(3.3)
= pC (RWB) + R⊤BC [RWB (pW − pWB)]

∧ 𝛿𝜑WB

(3.41)
We can compute Partial derivative w.r.t 𝜑WB as

𝜕pC

𝜕𝜑WB

= lim
𝛿𝜑WB→0

pC (RWB Exp (𝛿𝜑WB))pC (RWB)

𝛿𝜑WB

(3.41)
= lim

𝛿𝜑→0

−R⊤BC [RWB (pW − pWB)]
∧ 𝛿𝜑WB

𝛿𝜑WB

= R⊤BC [RWB (pW − pWB)]
∧

= R⊤BCp
∧
B

(3.42)

Partial derivative w.r.t pWB: Similarly, we perturb pWB

pC (pWB +RWB𝛿pWB) = R⊤BC
[︀
R⊤WB (pW − pWB − RWB𝛿pWB)− tBC

]︀
= pC (pWB)− R⊤BC𝛿pWB

(3.43)
We can compute Partial derivative w.r.t pWB as

𝜕pC

𝜕pWB
= lim

𝛿pWB→0

pC (pWB +RWB𝛿pWB)− pC (pWB)

𝛿pWB

(3.43)
= lim

𝛿pWB→0

−R⊤BC𝛿pWB

𝛿pWB

= −R⊤BC

(3.44)

Stack (3.42) and (3.44), we obtain the partial derivative of pC w.r.t TWB

𝜕pC

𝜕TWB
=

[︀
R⊤BCp

∧
B − R⊤BC

]︀
= R⊤BC · [p∧B − I3×3] (3.45)
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Substitute (3.45) into (3.40), we receive the analytical Jacobian w.r.t
Keyframe 𝒦𝑖’s pose expression

𝜕r𝒞il
𝜕TWB

= −𝜋 · R⊤BC · [p∧B − I3×3] (3.46)

In summary, Jacobian matrices of residual error in Visual Odometry factor
are

𝜕r𝒞il
𝜕pW

= −𝜋 · R⊤BCR⊤WB

𝜕r𝒞il
𝜕TWB

= −𝜋 · R⊤BC · [p∧B − I3×3]

(3.47)
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4 Visual Inertial Wheel Odometry

4.1 Wheel Odometry Factor in SE(3)

4.1.1 Residual Errors

The wheel odometer preintegration measurement ∆𝒪ij =[︁
∆R̃⊤ij ,∆p̃⊤ij

]︁⊤
between keyframe i and j is determined as

∆R̃ij = R̃⊤𝑖 R̃𝑗 Exp (𝛿𝜑ij)

∆p̃ij = R̃⊤𝑖 (p̃𝑗 − p̃𝑖) + 𝛿pij

(4.1)

where

— ∆R̃ij and ∆p̃ij are the preintegrated rotation and position measure­
ment.

— R̃𝑖,R̃𝑗 ∈ SO(3) are the rotation measured from wheel odometer at
keyframe i and j.

— p̃𝑖,p̃𝑗 ∈ R3 are the position measured from wheel odometer at
keyframe i and j.

— 𝛿𝜑ij and 𝛿pij ∈ R3 are the “random" noise of preintegrated rotation
and position measurement.

Given the wheel odometer preintegration measurement (4.1), we can compute

the wheel odometry factor residual error r𝒪ij
=

[︁
r⊤ΔRij

,r⊤Δpij

]︁⊤
∈ R3 between

two consecutive keyframe i and j

rΔRij
= e⊤3 Log

(︁
∆R̃⊤ij (R𝑖RBO)

⊤R𝑗RBO

)︁
= e⊤3 Log

(︁
∆R̃⊤ijR

⊤
BOR

⊤
𝑖 R𝑗RBO

)︁
rΔpij

= ΛR⊤BO
[︀
R⊤𝑖 (p𝑗 − p𝑖 +RjpBO)− pBO

]︀
−∆p̃ij

(4.2)

where

— rΔRij
and rΔpij

are the residual error vector of rotation and position.
— R𝑖,R𝑗 ∈ SO(3) are the rotation from body frame “B” to world frame

“W” of keyframe i and j.
— p𝑖,p𝑗 ∈ R3 are the translation from body frame “B” to world frame

“W” of keyframe i and j.
— Λ = [e1 e2]

⊤ with e𝑖 is the i -th standard unit basis vector.
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4.1.2 Jacobian of Residual Errors

For convenience, we denote

r⋆ΔRij
= Log

(︁
∆R̃⊤ijR

⊤
BOR

⊤
𝑖 R𝑗RBO

)︁
r⋆Δpij

= R⊤BO
[︀
R⊤𝑖 (p𝑗 − p𝑖 +RjpBO)− pBO

]︀
Instead of compute Jacobian directly on rΔRij

and rΔpij
, we will take the

partial derivative of r⋆ΔRij
and r⋆Δpij

.

— Jacobian of rΔRij
: Notice that p𝑖 and p𝑗 are not appear in r⋆ΔRij

, hence,
their Jacobian are zero. We perturb the remaining term

r⋆ΔRij
(R𝑖 Exp (𝛿𝜑𝑖)) = Log

(︁
∆R̃⊤ijR

⊤
BO (R𝑖 Exp (𝛿𝜑𝑖))

⊤R𝑗RBO

)︁
= Log

(︁
∆R̃⊤ijR

⊤
BO Exp (−𝛿𝜑𝑖) R

⊤
𝑖 R𝑗RBO

)︁
(3.11)
= Log

(︁
∆R̃⊤ijR

⊤
BOR

⊤
𝑖 R𝑗RBO Exp

(︁
−
(︀
R⊤𝑖 R𝑗RBO

)︀⊤
𝛿𝜑𝑖

)︁)︁
(3.9)
≃ r⋆ΔRij

(R𝑖)− J−1𝑟

(︁
r⋆ΔR𝑖𝑗

)︁ (︀
R⊤𝑖 R𝑗RBO

)︀⊤
𝛿𝜑𝑖

(4.3)
r⋆ΔRij

(︀
R𝑗 Exp

(︀
𝛿𝜑𝑗

)︀)︀
= Log

(︁
∆R̃⊤ijR

⊤
BOR

⊤
𝑖 R𝑗 Exp

(︀
𝛿𝜑𝑗

)︀
RBO

)︁
(3.11)
= Log

(︁
∆R̃⊤ijR

⊤
BOR

⊤
𝑖 R𝑗RBO Exp

(︀
R⊤BO𝛿𝜑𝑗

)︀)︁
(3.9)
≃ r⋆ΔRij

(R𝑗) + J−1𝑟

(︁
r⋆ΔR𝑖𝑗

)︁
R⊤BO𝛿𝜑𝑗

(4.4)

We can compute the Jacobian w.r.t rotation 𝜑𝑖 and 𝜑𝑗

𝜕rΔR𝑖𝑗

𝜕𝜑𝑖

= lim
𝛿𝜑𝑖→0

e⊤3

[︁
r⋆ΔRij

(R𝑖 Exp (𝛿𝜑𝑖))− r⋆ΔRij
(R𝑖)

]︁
𝛿𝜑𝑖

(4.3)
= −e⊤3 J−1𝑟

(︁
r⋆ΔR𝑖𝑗

)︁ (︀
R⊤𝑖 R𝑗RBO

)︀⊤ (4.5)

𝜕rΔR𝑖𝑗

𝜕𝜑𝑗

= lim
𝛿𝜑𝑗→0

e⊤3

[︁
r⋆ΔRij

(︀
R𝑗 Exp

(︀
𝛿𝜑𝑗

)︀)︀
− r⋆ΔRij

(R𝑗)
]︁

𝛿𝜑𝑖

(4.4)
= e⊤3 J

−1
𝑟

(︁
r⋆ΔR𝑖𝑗

)︁
R⊤BO

(4.6)
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In summary, the Jacobian of rΔRij
are

𝜕rΔRij

𝜕𝜑𝑖

= −e⊤3 J−1𝑟

(︁
r⋆ΔR𝑖𝑗

)︁ (︀
R⊤𝑖 R𝑗RBO

)︀⊤ 𝜕rΔRij

𝜕𝜑𝑗

= e⊤3 J
−1
𝑟

(︁
r⋆ΔR𝑖𝑗

)︁
R⊤BO

𝜕rΔRij

𝜕p𝑖
= 0

𝜕rΔRij

𝜕p𝑗
= 0

(4.7)
— Jacobian of rΔpij

: Similar, we perturb r⋆Δpij

r⋆Δpij
(R𝑖 Exp (𝛿𝜑𝑖)) = R⊤BO

[︁
(R𝑖 Exp (𝛿𝜑𝑖))

⊤ (p𝑗 − p𝑖 +RjpBO)− pBO

]︁
(3.5)
≃ R⊤BO

[︀
(I− 𝛿𝜑∧𝑖 ) R

⊤
𝑖 (p𝑗 − p𝑖 +RjpBO)− pBO

]︀
= r⋆Δpij

(R𝑖)− R⊤BO𝛿𝜑
∧
𝑖

[︀
R⊤𝑖 (p𝑗 − p𝑖 +RjpBO)

]︀
(3.3)
= r⋆Δpij

(R𝑖) + R⊤BO
[︀
R⊤𝑖 (p𝑗 − p𝑖 +RjpBO)

]︀∧
𝛿𝜑𝑖

(4.8)
r⋆Δpij

(︀
R𝑗 Exp

(︀
𝛿𝜑𝑗

)︀)︀
= R⊤BO

[︀
R⊤𝑖

(︀
p𝑗 − p𝑖 +Rj Exp

(︀
𝛿𝜑𝑗

)︀
pBO

)︀
− pBO

]︀
(3.5)
≃ R⊤BO

[︀
R⊤𝑖

(︀
p𝑗 − p𝑖 +Rj

(︀
I+ 𝛿𝜑∧𝑗

)︀
pBO

)︀
− pBO

]︀
= r⋆Δpij

(R𝑖) + R⊤BOR
⊤
𝑖 Rj𝛿𝜑

∧
𝑗 pBO

(3.3)
= r⋆Δpij

(R𝑖)− R⊤BOR
⊤
𝑖 Rjp

∧
BO𝛿𝜑𝑗

(4.9)
r⋆Δpij

(p𝑖 +R𝑖𝛿p𝑖) = R⊤BO
[︀
R⊤𝑖 (p𝑗 − p𝑖 − R𝑖𝛿p𝑖 +R𝑗pBO)− pBO

]︀
= rΔpij

(p𝑖)− R⊤BO𝛿p𝑖

(4.10)

r⋆Δpij
(p𝑗 +R𝑗𝛿p𝑗) = R⊤BO

[︀
R⊤𝑖 (p𝑗 +R𝑗𝛿p𝑗 − p𝑖 +R𝑗pBO)− pBO

]︀
= rΔpij

(p𝑗) + R⊤BOR
⊤
𝑖 R𝑗𝛿p𝑗

(4.11)

The Jacobian matrices of rΔpij
are computed as:

𝜕rΔp𝑖𝑗

𝜕𝜑𝑖

= lim
𝛿𝜑𝑖→0

Λ
[︁
r⋆Δpij

(R𝑖 Exp (𝛿𝜑𝑖))− r⋆Δpij
(R𝑖)

]︁
𝛿𝜑𝑖

(4.8)
= ΛR⊤BO

[︀
R⊤𝑖 (p𝑗 − p𝑖 +RjpBO)

]︀∧ (4.12)

𝜕rΔp𝑖𝑗

𝜕𝜑𝑗

= lim
𝛿𝜑𝑗→0

Λ
[︁
r⋆Δpij

(︀
R𝑗 Exp

(︀
𝛿𝜑𝑗

)︀)︀
− r⋆Δpij

(R𝑗)
]︁

𝛿𝜑𝑖

(4.9)
= −ΛR⊤BOR⊤𝑖 Rjp

∧
BO

(4.13)
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𝜕rΔp𝑖𝑗

𝜕p𝑖
= lim

𝛿𝜑𝑗→0

Λ
[︁
r⋆Δpij

(p𝑖 +R𝑖𝛿p𝑖)− r⋆Δpij
(p𝑖)

]︁
p𝑖

(4.10)
= −ΛR⊤BO

(4.14)

𝜕rΔp𝑖𝑗

𝜕p𝑖
= lim

𝛿𝜑𝑗→0

Λ
[︁
r⋆Δpij

(p𝑗 +R𝑗𝛿p𝑗)− r⋆Δpij
(p𝑖)

]︁
𝛿p𝑖

(4.11)
= ΛR⊤BOR

⊤
𝑖 R𝑗

(4.15)

In summary, the Jacobian of rΔpij
are

𝜕rΔpij

𝜕𝜑𝑖

= ΛR⊤BO
[︀
R⊤𝑖 (p𝑗 − p𝑖 +RjpBO)

]︀∧ 𝜕rΔpij

𝜕𝜑𝑗

= −ΛR⊤BOR⊤𝑖 Rjp
∧
BO

𝜕rΔpij

𝜕p𝑖
= −ΛR⊤BO

𝜕rΔpij

𝜕p𝑗
= ΛR⊤BOR

⊤
𝑖 R𝑗

(4.16)

4.2 Visual-Wheel Odometry on SE(2)

For most of the time, mobile robot is moving in the flat environment
where the movement in Z axis remains constant. We will perform the esti­
mation states in SE2-XYZ [58] by fusing optical and wheel odometry sensor.
We also detect planar movement then we should switch between performing
sensor fusion in SE2-XYZ state or sensor fusion in SE(3).

4.2.1 Reprojection factor on SE(2)

This constraint represents the error between the observed 2D feature
𝑥𝑖 and the 2D projected point x𝑖 from the corresponding landmark 3D 𝑙𝑖

w.r.t robot body coordinate system [R𝑖|p𝑖] ∈ SE2 and then to the image
plane P

x𝑖 = 𝜋(RCBR
𝑇
𝑖 (𝑙𝑖 − p𝑖) + p𝐶𝐵) + 𝜂x (4.17)

The feature-based SE(2)-XYZ [58] benefits from encapsulating the out­
-of-SE(2) motion perturbation and directly parameterizing the robot’s poses
on SE(2). The out-of-SE(2) motion [58] includes two parts: the translation
perturbation along z as 𝜂𝑧 ∼ 𝒩

(︀
0, 𝜎2

𝑧

)︀
and the rotation perturbation xy as
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𝜂𝑥𝑦 ∼ 𝒩
(︀
02×1,Σ𝜃𝑥𝑦

)︀
. Therefore, the pose can be written as:

R𝑖 ← Exp(
[︁
𝜂𝑇
𝜃𝑥𝑦

0
]︁𝑇

⏟  ⏞  
𝜂𝜃

)R𝑖, p𝑖 ← p𝑖 +
[︁
0 0 𝜂𝑧

]︁𝑇
⏟  ⏞  

𝜂𝑧

(4.18)

then the projection equation (4.17) becomes

x𝑖

=𝜋
(︀
RCBR

𝑇
𝑖 Exp (−𝜂𝜃) (lℓ − p𝑖 − 𝜂𝑧) + pCB

)︀
+ 𝜂𝑢

≈𝜋 (C𝑙𝑖) + J𝜂𝜃
u𝜃𝜂𝜃 + Ju

𝜂𝑧
𝜂𝑧 + 𝜂𝑢

=𝜋 (C𝑙𝑖) + 𝛿𝜂𝑢

(4.19)

where 𝛿𝜂𝑢 is a synthetic zero-mean noise and landmark position w.r.t camera
coordinate C𝑙𝑖 = RCBR

𝑇
𝑖 (𝑙𝑖 − p𝑖) + pCB. The noises 𝜂𝜃, 𝜂𝑧 and 𝜂x are

independent. Hence we use first-order approximation to linearize the noise
terms. The jacobians of u w.r.t. (𝜂𝜃,𝜂𝑧) are computed as:

Ju
𝜂𝜃

= J𝜋 (C𝑙𝑖) RCBR
𝑇
𝑖 (lℓ − p𝑖)

∧

Ju
𝜂𝑧

= −J𝜋 (C𝑙𝑖) RCBR
𝑇
𝑖

where J𝜋 is the jacobian of the projection model function in terms of the point
in the image plane. ORB-SLAM3 provides fish-eye and pinhole models. then
we can compute the covariance matrix as:

Σ𝛿𝜂𝑢
= Ju

𝜂𝜃
Λ𝑇
12Σ𝜃𝑥𝑦Λ12J

u𝑇
𝜂𝜃

+ 𝜎2
𝑧J𝜂𝑧

e3e
𝑇
3 J

u𝑇
𝜂𝑧

+ 𝜎2
𝑢I2 (4.20)

As the matching feature of the corresponding landmark is represented in
pixels 𝑖ℓ𝑢, we can formulate our reprojection error as:

𝑟𝑖 = 𝜋(C𝑙𝑖)− 𝑖ℓ𝑢 (4.21)

Graph optimization method is used for the minimization of the error stated in
(4.21). The information matrix for (4.21) is the inverse of covariance matrix
Σ𝛿𝜂x

. The Jacobian matrix of 𝑟𝑖 w.r.t robot pose are

J𝑖 =

[︂
𝜕𝑟𝑖
𝜕p𝑖

𝜕𝑖ℓe

𝜕𝜑𝑖

]︂
,

𝜕𝑟𝑖
𝜕p𝑖

= −J𝜋 (C𝑙𝑖) RCBR
𝑇
𝑖 Λ12

𝜕𝑟𝑖
𝜕𝜑𝑖

= J𝜋 (C𝑙𝑖) RCBR
𝑇
𝑖 (1ℓ − p𝑖)

∧ e3

(4.22)
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The Jacobian matrix of 𝑟𝑖 w.r.t landmark 𝑙𝑖 is

J𝑙𝑖 =
𝜕𝑟𝑖
𝜕𝑙𝑖

= J𝜋 (C𝑙𝑖) RCBR
𝑇
𝑖 (4.23)

4.2.2 Wheel Odometry Factor on SE(2)

Inspired by the work on preintegrated IMU on SE(3) by [13], Zheng
and Liu [58] have formulated the preintegration of encoder’s measurements
on SE(2). From the motion model of the wheel encoder, we get the robot
body poses 𝜈𝑖 and 𝜈𝑗 between two consecutive odometry readings k, k+1,
respectively. The preintegrated measurement and the corresponding noises
between key frames i, j are formulated as:

𝜑𝑖𝑗 := 𝜑𝑖𝑗 − 𝛿𝜑𝑖𝑗

p𝑖𝑗 := p̃𝑖𝑗 − 𝛿p𝑖𝑗

(4.24)

The propagation of the integrated noise 𝛿𝜑𝑖𝑗, 𝛿r𝑖𝑗 written in compact form
as in [58] [︃

𝛿r𝑘+1

𝛿𝜑𝑘+1

]︃
:= 𝛿𝜈𝑘+1 = A𝑘𝛿𝜈𝑘 +B𝑘𝜂𝜈𝑘,

A𝑘 =

⎡⎣ I2 Φ
(︁
𝜑𝑘

)︁
1×r̃𝑘

0 1

⎤⎦ ,B𝑘 =

⎡⎣ Φ
(︁
𝜑𝑘

)︁
0

0 1

⎤⎦ (4.25)

Hence, the covariance of wheel odometry 𝛿𝜈𝑘 can be propagated at each
steps:

Σ𝛿𝜈𝑘+1
= A𝑘Σ𝛿𝜈𝑘

A𝑇
𝑘 +B𝑘Σ𝜈𝑘

B𝑇
𝑘 (4.26)

We can now formulate the residual error function of preintegrated wheel
odometry as follows:

rij =

[︃
Φ (−𝜑𝑖) (r𝑗 − p𝑖)

𝜑𝑗 − 𝜑𝑖

]︃
−

[︃
r̃𝑖𝑗

𝜑𝑖𝑗

]︃
(4.27)
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where its information matrix is the inverse of the covariance term Σ𝛿𝜈𝑘+1
.

The Jacobian of error function is:

J𝑖𝑗
𝑖 =

𝜕rij
𝜕𝜈𝑖

=

[︃
−Φ (−𝜑𝑖) −Φ (−𝜑𝑖) 1

× (r𝑗 − p𝑖)

0 −1

]︃

J𝑖𝑗
𝑗 =

𝜕rij
𝜕𝜈𝑗

=

[︃
Φ (−𝜑𝑖) 0

0 1

]︃ (4.28)

4.3 Switching criteria between VIW & VW

After inertial initialization and determining the gravity direction in
R-V(I)WO, we monitor the maximum change of movement along the 𝑍-axis
in the current local window of key frames.

∆𝑍 = max𝑍𝑖 −min𝑍𝑖 : 𝑍𝑖 = 𝑒3𝑇 * 𝑝𝑖 ∈ 𝑙𝑜𝑐𝑎𝑙_𝑤𝑖𝑛𝑑𝑜𝑤 (4.29)

if ∆𝑍 < threshold then the planar assumption is activated in both pose
optimization in tracking thread, and VW fusion is performed in bundle ad­
justment in local mapping thread. Otherwise, VIW fusion is activated and
the fusion is performed as optimization in SE(3). After experiences, we chose
the threshold is 15 cm for our robot and work best at most of the time.

Figure 4.1 — Switching criteria between VIW & VW
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4.4 Pose Graph Optimization for Sensor Fusion

Since we have three measurements, we will generate three types of
factors in the pose graph optimization: IMU Preintegration Factor, Visual
Odometry Factor and Wheel Odometry Factor. We phrase the problem as
a Least Squares Optimization and use the Levenberg-Marquardt algorithm
implemented in the g2o framework [22] to carry out all the optimization.
The Levenberg-Marquardt algorithm is the iterative optimization technique
to minimize the cost function, hence, the Jacobian Matrix is crucial. For each
factor that we are using in this work, we provide the analytical expression to
determine the cost function as residual error and its Jacobian. The overview
of our graph optimization base is illustrated in Fig 4.2.

Figure 4.2 — Factor graph for fusing Visual-Inertial-Wheel Odometry sensor

4.5 Dynamic Visual SLAM

It is essential to design and tailor an Visual SLAM system that is
compatible to work in high-dynamics enviroment. There are two sets of
approach to address this problem, one is geometry-based and the other is
machine learning-based.
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4.5.1 Geometry-based

The main motive of this methods that we take advantage of the motion
consistency to outlier and reject the moving map points. There are two
geometry-based methods that is widely use - K-Means cluster and epipolar
constraint.

K-Means Cluster

We first separate all the extracted features in each receiving new image
by N clusters using K-Means algorithm. Each point groups is assumed that
they are belong to the same surface of object. For each point groups c𝑗, the

Figure 4.3 — K-Means Cluster Algorithm

average reprojection error r𝑗 of all features 𝑢𝑖 with corresponding matched
features 𝑃 𝑖 is computed. When the average error is larger than the a certain
threshold, we consider this cluster as moving object. All the features that
belong to this cluster are removed and not be used to further tracking.

Epipolar Constraints

The ideal static feature must satisfy the epipolar constraints, on the
other hand the moving features will violated the constraint. Fig. 4.4 shows
that the static point 𝑋, which is projected into two consecutive frames i
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Figure 4.4 — The ideal epipolar constraint

and j, x is on frame i and 𝑥
′ is on frame j. Now, one can conclude that

corresponding points seen by two views of the same 3D real point lie on
conjugate epipolar lines. If the 3D real point 𝑋 is static, it is satisfy the
equation

𝑝𝑇2𝐹𝑝1 = 0 (4.30)

where F is fundamental matrix and 𝑝1, 𝑝2 are the the homogeneous coordi­
nates of 𝑥 and 𝑥

′ respectively. However, due to all the uncertainty of feature
extraction and the estimation of F matrix, projected point 𝑥′ will not always
satisfy (4.30) but it will be very close to the epipolar line 𝑙

′. So that we can
compute the distance D between 𝑥

′ and epipolar line 𝑙
′, if it greater than

certain threshold then we mark it moving point and marginalize it.

4.5.2 Machine learning-based methods

Due to the real-time performance constraints, we have to choose the
image semantic segmentation that light-weighted and meet this requirement,
as mentioned in 1.4.3, SegNet is the valid candidate for this task. SegNet is
the encoder-decoder semantic segmentation architecture illustrating in Fig.
4.5. The encoder uses a pre-trained VGG16 [26] model, including 13 con­
volution layers. After every 2 encoder layer, there exists a corresponding
max-pooling to down-sample the image. The innovated of SegNet is in the
decoder side, where instead of using deconvolution to upsample the image
to original size, it stores the pooling indices in encoder side and recall it in
decoder for upsampling. This helps reduce significantly trainable parameters
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Figure 4.5 — SegNet - Encoder-Decoder semantic segmentation architecture

from 134M to 17.4M and less memory usages. In the following section we
will discuss in more detail how we implement SegNet in our pipeline.

4.5.3 Pros and Cons

Geometry-based methods is only based on geometry constraints, so
that it costs minor computation and allows the system work in real-time.
Moreover, it can detected the moving objects that unable by Learning-based
can not detect. However, it also have some limits

— They can not detect the potential moving objects that is currently
not moving.

— They is not able to build that semantic maps which have rich infor­
mation which can use for further application.

In this opposite, machine-learning method can detect the potential
moving object and build meaningful map that is able to reuse for various
tasks. However, on the downside, it takes a lot of time and memory to
process and also requires the right hardware.
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4.6 System Overview

The System Overview section aims to introduce our Visual-Iner­
tial-Wheel Odometry system and implemented SegNet models to working in
the high dynamic enviroment. Our system is built on ORB-SLAM3 [9], the
system includes five main threads: Segmentation thread, Tracking thread,
Local Mapping thread, Loop-closure & Map Merge thread and Atlas compo­
nent.

Figure 4.6 — The main components of our proposed system

4.6.1 Tracking thread

This is the main thread of the system; it is in charge of extracting
ORB features in the new frame, but it will remove the features that lay on
dynamic religion. Epipolar constraint also takes into account and removes
violating features. In the monocular mode, we initialize odometric data to
get the immediately correct scale; then we update the motion model of the
body robot with preintegrated odometric. It also check the zero-velocity
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state, if current and last frame have enough matched and mean disparity
is lower than threshold, it means that the robot is in static state, all next
steps will be skipped, reference landmarks of current frame will be updated
and system wait for new frame. After having the relative estimation of the
robot pose, we optimize this estimation using the motion-only BA method
to reduce the complexity of the problem to be optimized, i.e. in the optimal
graph; the positions of the landmarks are fixed to reduce the complexity of
optimize; we only optimize the robot pose and the state vector of the IMU.
Indeed, the graph also includes factor IMU and Wheel Odometry preintegra­
tion. The tracking thread also plays the role of selecting the keyframe for
the system. If only an optical sensor is used, the selection criteria are care­
fully considered through the tracking variables that have been presented in
[30]. However, if using the IMU and wheel odometry sensors simultaneously,
it is critical that we add the keyframe at small intervals to avoid erroneous
estimation of motion sensor biases. Through the experiment, we can choose
the interval to add keyframes when using the motion sensor, which is 0.5 sec­
onds. These keyframes might be removed later if not needed in the following
steps of the system. When the visual tracking lost, the system changes to
RECENTLY_LOST-mode; in this mode, the system only use odometric to
update camera pose and map points are projected in the estimated camera
pose, then searched for matches within a large image window.

4.6.2 Segmentation thread

When this thread receives an incoming frame, it will frame the frame
into regions, each of which belongs to an object; if this object has motion
potential, all ORB features within this region will be marked as move and
then discard. The Fig 4.7 shows how our segmentation thread works, where
the green points indicate statics points using for tracking and the red points
illustrate moving features points are removed by SegNet.
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Figure 4.7 — Semantic Segmentation thread

4.6.3 Local Mapping thread

The Local Mapping thread assumes the role of handling the new
keyframe created by the tracking thread. First, when a new keyframe is
received, it will update the graphs related to covisibility and compute the
bag of words. After keyframe preprocessing, this sequence performs the re­
moval of outlier landmarks that are observed by less than 30% (used by [30])
of the frame in which they are intended to be observable it. At the same time,
Local BA also marks any landmarks as outliers and they will also be removed
in this step. Then new map point is created by triangulating matched be­
tween new keyframe and its neighbors, all the parameter e.g positive depths,
reprojection error, epipolar constrains and sufficiency parallax have checked,
if all have passed new map point will be created. The next step is to perform
a Local BA. If only optical sensor is used, the local keyframe is built by the
covisibility; this approach is superior than the sliding-window method since
it helps to maximize the constancy and more information graph that leads
to find the global minimize. When fusing with IMU and Wheel Odometry,
the sliding-window method is used, since we need the consecutive keyframe
for the preintegration factor. Difference with Motion-only BA in tracking
thread; Local BA will try to optimize all the variables including robot pose,
IMU’s vector state and landmark position. This optimization is an expen­
sive operation, but it runs in parallel threads so it will not affect real-time
constrains in tracking thread. The keyframe culling step executes after Lo­
cal BA, a keyframe that considers as redundant when 90% of the landmarks
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have been observed by it, also been seen in at least other three keyframes.
If fusing IMU and wheel odometry, after keyframe is removed, we have to
re-preintegration that from previous to the next keyframe of the keyframe
that will be deleted. After this step local map will decide that should system
uses VIW or VW fusion based on principle describing in 4.3.

4.6.4 Loop Closure & Map Merge thread

Loop closure is an essential part of the SLAM system. New keyframe
after be processed in Local Mapping thread, be sent to this thread for updat­
ing the vocabulary tree in bag of words. This bag of words of new keyframe
compares its neighbor and retains the most similar. Then we query the
recognition database and discard all those keyframes whose score is lower
than 𝑠𝑚𝑖𝑛. To accept a loop candidate, we must detect consecutively three
loop candidates that are consistent (keyframes connected in the covisibility
graph). There can be several loop candidates if there are several places with
similar appearance to new keyframe. We then optimize the loop and fusing
the duplicate landmark in 𝑠𝑖𝑚(3) [47]. Map merge works with same prin­
ciple as loop-closure, it fusing two maps in Atlas component that has the
appearance similarity.

4.6.5 Atlas Component

Atlas is a component inside the system that stores saved or building
maps that the robot has visited. It contains active map which is the building
map, in opposite of non-active maps. The Loop Closure & Map Merge thread
actively searching for similarity between the active and non-active maps, if
the merging candidate found between keyframe of active map and keyframe
in one of non-active maps, map merging will be activated to merge and fused
two map together, all duplicate landmark will be fused. Atlas allows system
achieved the life-long mission of SLAM.
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5 Evaluation

In this part, we are going to evaluation our propose system in the
term of robustness in bad illumination condition and robustness in high dy­
namic enviroment. For the stated purpose, we use OpenLoris [44] datasets
to evaluate the the robustness in bad illumination and TUM RGB-D [49]
to evaluate the result when working in high dynamic environments. All the
computation Absolute trajectory error (ATE), scale correction and illustra­
tion trajectory have done by [17]. We also test our system in real robot in
laboratory’s Youbot and Courier Robot at Sberbank Robotics Laboratory.

5.1 OpenLoris Datasets

The evaluation took part on OpenLoris [44], which was recorded from
a wheeled robot moving at indoor environments. It contains a wide range of
sensors, as showing in Table 5.1. The datasets provides five scenes:

Sensor Data Fps resolution
D435i color 30 848x480
D435i depth 30 848x480
D435i IMU 400 -
T265 Fisheye Stereo 30 848x480

Wheel encoder odom 20 -

Table 5.1 — Sensors providing on OpenLoris datasets

— Office includes 7 sequences, recording in the same room, sequence 1
- 2 - 3 have potential merging to one maps, sequence 5 - 6 have low-light
condition, sequence 7 introduces dynamic objects.

— Corridor contains 5 sequences, recording in corridor. This sense is
most challenging, having not only change illumination, but also low-texture
during the corridor, extreme high contrast, changing day-night time. The
lobby in the middle of each sequence can potential use for map merge.

— Cafe has 2 sequences, taking from same public cafe shop with moving
people and changing objects.
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— Home records in 2 bedrooms apartment, which include may change
objects arranges, it is a good challenging sequences for testing place recogni­
tion and map merging.

— Market includes 3 sequences in a supermarket with a long loop - 220
meters and high dynamics environments.

Figure 5.1 — Mobile Robot in OpenLoris datasets

The ground-truth from motion capture or offline Lidar SLAM is pro­
vided for all sequences.

In table 5.2, we see that the wheel odometry in the OpenLoris dataset
is very good compared to the ground truth. In general, in most cases for
wheeled mobile robots that operate indoors can be provided with very good
wheel odometry.

For ORB-SLAM3, we show that purely optical SLAM is not suitable
for real-life scenarios in terms of accuracy as well as robustness. It is clear
that visual SLAM system fails in corridors sequences where visual conditions
are hard (e.g. reflection, bad illumination) and in markets where there are
moving objects in the scene.

Visual-Inertial ORB-SLAM3 shows better performance then visual
one. ORB-SLAM3 shows stable and robust performance on different se­
quences except for market sequences. Usually, VINS systems are more robust
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Sequence Wheel ORB-SLAM3 ORB-SLAM3 R-V(I)WO R-V(I)WO 1st place

Odometry Visual Visual VIW (Ours) VW (ours)

Inertial without switching with switching

office1-1 0.040 0.132 0.109 0.081 0.020 0.172
office1-2 0.070 0.108 0.071 0.075 0.026 0.936
office1-3 0.043 0.195 - 0.137 0.022 0.732
office1-4 0.080 0.182 0.094 0.094 0.048 0.673
office1-5 0.090 0.234 0.235 0.233 0.081 0.515
office1-6 0.042 0.125 0.089 0.075 0.024 0.459
office1-7 0.072 0.093 0.069 0.087 0.022 0.854
Avg 0.062 0.153 0.111 0.112 0.035 0.620

home1-1 0.230 0.402 0.406 0.388 0.221 0.172
home1-2 0.314 0.345 0.363 0.350 0.299 0.240
home1-3 0.110 0.354 0.361 0.373 0.116 0.158
home1-4 0.095 0.310 0.351 0.341 0.085 0.171
home1-5 0.066 0.321 0.318 0.295 0.069 0.254
Avg 0.163 0.346 0.360 0.350 0.158 0.206

cafe1-1 0.236 0.177 0.116 0.118 0.213 0.232
cafe1-2 0.424 0.145 0.164 0.194 0.422 0.230
Avg 0.330 0.161 0.140 0.156 0.318 0.231

corridor1-1 1.948 - 1.817 1.647 1.831 1.032
corridor1-2 2.215 - 1.260 1.395 2.147 0.675
corridor1-3 0.222 - 0.990 0.919 0.159 1.320
corridor1-4 0.345 - 0.819 0.596 0.235 1.270
corridor1-5 0.640 2.109 1.131 0.705 0.420 0.964
Avg 1.074 2.109 1.204 1.052 1.139 1.052

market1-1 2.522 10.29 8.829 9.378 2.590 1.073
market1-2 5.398 - 11.86 12.378 5.351 1.216
market1-3 4.267 10.36 9.905 9.613 4.523 1.432

Avg 4.062 10.33 9.928 10.376 4.155 1.240

Table 5.2 — Performance comparison of the RMSE position (m) between
different settings of ORB-SLAM3, R-V(I)WO with/without switching and
the 1st place winner of the competition on OpenLoris Dataset
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to moving objects, but the main problem is bad inertial initialization by pla­
nar movements. This affects the whole VINS system and its robustness.

We tested R-V(I)WO without the planar assumption switching tech­
nique on OpenLoris scenarios. The visual-inertial-wheel fusion on 𝑆𝐸3 im­
proves the accuracy of the system. It even outperforms the results of the com­
petition’s winner solution in several scenarios. On the other hand, we can see
that the wheel odometry alone outperforms R-V(I)WO without switching.
This is because of the bad effect of IMU initialization problems in planar
motion, and because of complex optimization in 𝑆𝐸3 space, which is over­
parameterized.

After adding the switching ability based on the planar assumption de­
tection, we show that in most cases R-V(I)WO with switching performs best.
This proves how wheel odometry fusion and parameterizing the optimization
in 𝑆𝐸2 provide the wheeled ground mobile robot with accurate and robust
localization and mapping system in different real-life scenarios.

We illustrated the quantity result comparison of R-V(I)WO with
switching and ORB-SLAM3 in Fig. 5.2, in which we can clearly see the
improvement and robustness of our system compare with ORB-SLAM3. Ad­

Figure 5.2 — Quantity comparison on corridor sequence

ditionally, we show that R-V(I)WO is optimized in terms of inference time.
In table 5.3, we present the execution time of the tracking thread. It can run
up to 50 fps on a moderate notebook, processing each frame in the tracking
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thread. For other threads, ORB-SLAM3 and R-V(I)WO execute them in
parallel threads and only process the keyframes.

ORB_SLAM3 R-V(I)WO
Features Extraction 21.76841± 7.62156 11.41350±2.92199
Stereo Matching 2.70659±0.59921 2.58476±0.54398
IMU Preintegration 0.13646±0.55224 0.11735±0.05763
Pose Prediction 0.13646±0.55224 0.09650±0.46915
Local Map Track 6.35867±2.39035 5.62523±1.59043
New KF decision 0.13486±0.26861 0.13499±0.25433
Total Tracking 34.34582±10.88638 22.97315±4.23357

Table 5.3 — Execution time (Milliseconds) comparison with ORB-SLAM3

5.2 TUM RGB-D Datasets

The TUM RGB-D is recorded in the typical office senses with peo­
ple appear, during the dataset people are moving, walking, chatting and
interacting with objects. It contains multiple sequences for each camera
moving is moving in the typical direction: xyz, static, rotation half sphere,
roll-pitch-yaw. By this character, this datasets is very useful for benchmark­
ing dynamics SLAM system. TUM-RGBD is also suitable to compare with
other models in the literature by robustness, accuracy, and execution cost.

We tested our modification of the ORB-SLAM3 system without the
constrained optimization part, to see independently how well the model is
performing.
This outliers’ rejection model provides ORB-SLAM3 with robustness and
accuracy in the case of tracking in a dynamic environment.

We show in table 5.4, the results of our model compared to ORB-S­
LAM3 and other works in the literature. It is shown that our model is
robust over all the sequences we tested, and gets either the best or second
best accuracy in most cases. We also show two trajectories of ORB-SLAM3
with/without our dynamic model (figure 5.3), and it is clear that ORB-S­
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Translation RPE (m/s)

Sequence
ORB_SLAM3

(RGB-D)
DS-SLAM

Detect
Slam

Ours
(G+AI)

walking_xyz 1.251107 0.0333 0.0241 0.046710
walking_rpy 1.517069 0.1503 0.2959 0.040565
walking_half 1.055122 0.0303 0.0514 0.040534
walking_static 0.553423 0.0102 - 0.011880
sitting_xyz 0.016737 - 0.0201 0.016970
sitting_rpy 0.031859 - - 0.032727
sitting_half 0.037480 - 0.0231 0.024585
sitting_static 0.015077 - - 0.009412

Table 5.4 — Comparison of the RMS RPE in translation drift over
TUM-RGBD dataset. Best results are highlighted in bold and the sec­
ond-best are underlined.

LAM3 system is not robust to dynamic environments and it works better
with our modifications.

Figure 5.3 — Trajectory comparison on TUM-RGBD walking-XYZ sequence
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We also show in table 5.5 that our modification preserve the real-time
performance of the ORB-SLAM3 system and it runs as fast or faster than
other models.

Methods AI Geometric Tracking Hardware
ORB

SLAM3
- - 22.2322 CPU only

DS-SLAM 75.64 47.38 148.53
Intel i7 CPU
P4000 GPU

Dyna
SLAM

884.24 589.72 1144.93 Titan X GPU

Detect
SLAM

1 310.0 20.0 -
Intel i7-470

GTX960M GPU

Ours 69.3642 26.6683 22.837
Intel i7 CPU

RTX2060 GPU

Table 5.5 — Comparison of Computation Time [ms] on each module. The
best results are highlighted in bold

5.3 Youbot Platform

5.3.1 Robot Platform

youBot [3] is a mobile robot designed and developed by German robot
manufacturer Kuka. In addition to the movable body, youBot is coupled with
a gripper with 5 degrees of freedom, but in our testing, this arm was not
needed. The robot is actuated by 4 omnidirectional wheels. These special
wheels have reels mounted around the circumference at a 45° angle to the
plane of the wheel and allow youBot to combine any translational and rota­
tional movements at any given time. This makes omnidirectional movement
possible, including horizontal and diagonal movements.

Some general youBot specification:

— Overall Weight : ∼ 20 kg
— Permissible Payload : 20 kg
— Overall Length : 580 mm
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— Overall Widht : 380 mm
— Overall Height : 140 mm
— Minimum velocity : 0.01 m/s
— Maximum velocity: 0.8 m/s
— Power supply: 24 V
— Communication: EtherCat

The robot’s motor has a built-in encoder that will provide the robot
position directly with a frequency of 300 Hz that we will use infusing with
other sensors to estimate the position of the robot. The KUKA youBot is
controlled by an onboard computer running a version of Ubuntu Linux. The
youBot’s onboard computer has many of the features of a standard computer,
including a VGA port to connect an external monitor, several USB ports for
connecting sensors and other peripherals, and an Ethernet port for connecting
the youBot to a network.

In addition to the hardware manufactured and available at youBot, we
need to design and manufacture specialized mounting components to place
the necessary sensors for our navigation system. Aluminium industrial pro­
files are used to create a frame for the rack. The camera mount is custom

Figure 5.4 — Kuka youBot mobile robot
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designed and manufactured using a 3D printer. The design and manufac­
ture of the fixture are carried out at the ITMO Biomechatronics and Energy
Efficient Robotics Laboratory.

(a) The designed youBot and mounted parts
in Solidwork

(b) The manufactured youBot
with mounted camera and laptop

Figure 5.5 — The costumed youBot for our experiment

The Fig. 5.5a and Fig. 5.5b show the designed robot in Solidwork
and the manufactured robot with mounting parts for the laptop and camera,
respectively.

5.3.2 Visual-Inertial Sensor

ZED 2 AI Stereo Camera (Fig. 5.6) is our choice for optical sensors
and inertial sensors. The choice is based on the fact that the ZED2 camera
provides:

— Wide Field-of-Views stereo cameras: 120° Wide-Angle Field of View
— Neural Depth-Sensing: Bring the high-quality depth information by

neural network
— Support: Spatial Object Detection opens new opportunities for im­

proving our tracking and navigation system.
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Moreover, the camera has done the factory optical calibration with the accu­
rate optical parameters:

"All ZED 2, ZED and ZED Mini stereo cameras are calibrated at our
factory using special equipment that guarantees highly accurate stereo and
sensor calibration." [46]

Besides that, ZED 2 was also build-in with an Inertial Measurement Unit
that gathers real-time synchronized inertial, elevation and magnetic field data
along with image and depth, in addition, the measurement has been denoised
and we can obtain a more accurate measurement from IMU in ZED 2 camera.

Figure 5.6 — ZED 2 AI Stereo Camera

Some general specifications about the optical sensor and IMU sensor
in ZED 2 camera

— Stereo Field of View (Horizontal/Vertical): 120°.
— Maximum RGB Resolution: 4416 x 1242.
— RGB Fps: Up-to 100.
— Depth Technology: Neural Stereo Depth Sensing.
— Depth Resolution: Native video resolution (in Ultra mode).
— Depth Fps: Up to 100.
— Depth FOV: 110° (H) x 70° (V) x 120° (D) max.
— Inertial Unit: Gyroscope and Acceleration at 400 Hz.
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5.3.3 Intrinsic Calibration

Optical Sensor Calibration

As stated in Section 5.3.2, we do not have to perform the optical
calibration for ZED 2, instead of that, the parameters provided by company
is used directly, those camera parameters (for 1280x720 res.) are following:
Cameras model is Pinhole with intrinsic matrices K:

Left Camera: K1 =

⎡⎢⎢⎣
528.9899902343 0 633.989990234

0 528.510009765 347.914001464

0 0 1

⎤⎥⎥⎦

Right Camera: K2 =

⎡⎢⎢⎣
529.6049804692 0 646.489990234

0 529.299987793 364.442504883

0 0 1

⎤⎥⎥⎦
The distortion model is Plumb Bob [6] model: 𝐷 = [𝑘1 𝑘2 𝑝1 𝑝2 𝑘3]

⊤

Left Camera: D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.0418732017279
0.0109836999327

0.000561256019864

2.17856995732e− 05

−0.00519326981157

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Right Camera: D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−0.043696500361
0.0126504004002

0.000142247998156

−0.00036192900734
−0.00574736017734

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Baseline between left and right sensor is 𝑏 = 120(𝑚𝑚)

Inertial Intrinsic Calibration

In the task of IMU intrinsic Calibration, we try to estimate the IMU
Noise Model which includes Additive "White Noise" and Bias. IMU Noise
Model - The rapid fluctuations in the sensor signal are modelled heuristically
with a zero-mean, independent, continuous-time white Gaussian noise pro­
cess of strength 𝜎𝑔 for gyroscope and 𝜎𝑎 for acceleration. In other words,
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the higher is, the more "noisy" our measurements. In common IMU model,
slow variations in the sensor bias are modelled with a "Brownian motion"
process, also termed a "Wiener process", or "random walk" in discrete-time.
Formally, this process is generated by integrating "white noise" of strength
𝜎𝑏𝑔 (gyro) or 𝜎𝑏𝑎 (accel). In general, there is 4 parameters that we need to
estimate to model IMU noise (Table 5.6).

Parameter Symbol Units
Gyroscope "white noise" 𝜎𝑔

rad
𝑠

1√
𝐻𝑧

Accelerometer "white noise" 𝜎𝑎
𝑚
𝑠2

1√
𝐻𝑧

Gyroscope "random walk" 𝜎𝑏𝑔
rad
𝑠2

1√
𝐻𝑧

Accelerometer "random walk" 𝜎𝑏𝑎
𝑚
𝑠3

1√
𝐻𝑧

Table 5.6 — Summary of the IMU noise model parameters

These parameters can be estimate by analysed Allan standard devia­
tion. We used the open-source code project kalibr 1 [14] for estimate these
parameters. In order to yield the good result, there are some requirement
when we record the datasets:

— The datasets must contain at least 3 hours long of IMU data, the
longer the more accurate result.

— During the recording dataset, IMU sensor must be static and parallel
with flat surface.

— The enviroment should not have any significantly changing in term of
temperature and pressure.

Following the instruction in the project page and recording the datasets that
meet all above criteria, we are able to obtain all the necessary intrinsic pa­

1https://github.com/ethz-asl/kalibr
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Figure 5.7 — Allan standard deviation of a MEMS gyro with manually
identified noise processes

rameters for IMU that can work fine in our VIWO, the result as following

𝜎𝑔 =0.000139626

(︂
rad

𝑠

1√
𝐻𝑧

)︂
𝜎𝑎 =0.0016

(︂
𝑚

𝑠2
1√
𝐻𝑧

)︂
𝜎𝑏𝑔 =0.000033989

(︂
rad

𝑠2
1√
𝐻𝑧

)︂
𝜎𝑏𝑎 =0.0002509

(︂
𝑚

𝑠3
1√
𝐻𝑧

)︂
5.3.4 Extrinsic Calibration

Camera-IMU Extrinsic

We used directly the extrinsic parameters that provide in camera
SDK:

𝑇𝑏𝑐 =

⎡⎢⎢⎢⎢⎣
0.0052295 0.00167686 0.99998492 0.00187634

−0.99998563 −0.00119165 0.0052315 0.02301252

0.00120045 −0.99999786 0.00167064 0.00197573

0.0 0.0 0.0 1.0

⎤⎥⎥⎥⎥⎦
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Wheel Odometric-IMU Extrinsic

We computed the transformation between wheel odometric-IMU and
yields following results:

𝑇𝑏𝑜 =

⎡⎢⎢⎢⎢⎣
0.9998229886630 −0.0129414007982680 −0.0136569208171174 −0.246310950318683
0.0129874331342 0.99991025598902 0.00328733152227729 −0.0328630430685953
0.0136131525154 −0.00346411797326174 0.999901336115347 −0.530726569477215

0 0 0 1

⎤⎥⎥⎥⎥⎦

5.3.5 Experiments

Sensor configuration

We configured the sensor properties so that it can provide sufficiently
information for our system, as showing in Table 5.7 We will run the test on

Sensor Data Fps resolution
RGB color 30 1280x720

Inertial gyroscope 400 -
Inertial accelerometer 400 -

Wheel odometric odometry 300 -

Table 5.7 — Sensors provided on our robot

two sequences

— Office: Robot operates on the office with good illumination condition,
rich features.

— Empty Room: Robot run on the bad light condition, lack of feature.

The ground truth from lidar SLAM is provided for the empty room.

Evaluation on youBot

We will compare our works (Stereo-Inertial-Wheel Odometric) with
the state-of-the-art visual-inertial ORB-SLAM3 [9] on the real-time running.
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Figure 5.8 — Testing our navigation on real-equipment

The quantity comparison result is shown in Fig. 5.9. Observing at
Fig. 5.9, we can see that the trajectory of our navigation system can locate
the robot with the same accuracy as the lidar SLAM result, and the error
over time is not as large as ORB-SLAM3 when observing at a separate XYZ
graph. In particular, according to the Z axis, the error is very large over time
even though the robot moves on the plane during the operation. However,
the evaluation may contain errors because the accuracy of youBot’s 2D lidar
is not really high.
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Figure 5.9 — Comparison trajectory with ORB-SLAM3
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The Absolute Pose Error (APE) for ORB-SLAM3 is 35 cm and for
OUR system is 30 cm.

5.4 Courier Robot

We also run the testing on real Courier in Fig 5.10.

Figure 5.10 — Courier Mobile Robot in Sberbank Robotics Lab

The ground-truth is generated from ACML Localization on built map.
We achieved the the Absolute Pose Difference with "ground-truth" is 25 cm.
The trajectory comparision is presented in Fig. 5.11
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Figure 5.11 — Quantity comparison with AMCL Localization in Courier
Robot
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Conclusion

In this report, we presented in this work a SLAM system called
R-V(I)WO, designed to work efficiently on real-life challenging scenarios for
ground wheeled mobile robots. It is based on the ORB-SLAM3 system and
uses a novel technique of switching between VIW and VW fusion modes. The
experiment has shown that our system is superior performance in the task
localization and mapping in dynamic and real-life scenario. The evaluation is
conducted in public datasets and real robot platform in the laboratory. The
system is built on the classical ORB feature that meet the real-time perfor­
mance, however with the revolution of hardware, it opens many opportunity
to implement more sophisticate type of feature and descriptor into SLAM
system like handcraft-based SIFT, SURF or AI-based SuperPoint, etc. That
can help to improve significantly the consistency and quality sparse map.
Current system built sparse map which suitable for localization but indeed
a dense map is more meaning full and can import to other works to build a
dense and semantic map for high level and intelligence command navigation
task. In the future works, we will focus to resolve the above remaining tasks
and ready to bring visual SLAM into real world.
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