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Abstract— This paper presents RVWO, a system designed to
provide robust localization and mapping for wheeled mobile
robots in challenging scenarios. The proposed approach lever-
ages a probabilistic framework that incorporates semantic prior
information about landmarks and visual re-projection error to
create a landmark reliability model, which acts as an adaptive
kernel for the visual residuals in optimization. Additionally, we
fuse visual residuals with wheel odometry measurements, taking
advantage of the planar motion assumption. The RVWO system
is designed to be robust against wrong data association due to
moving objects, poor visual texture, bad illumination, and wheel
slippage. Evaluation results demonstrate that the proposed
system shows competitive results in dynamic environments and
outperforms existing approaches on both public benchmarks
and our custom hardware setup. We also provide the code as
an open-source contribution to the robotics community2.

I. INTRODUCTION

The demand for wheeled mobile robots in logistics, in-
spection, and monitoring applications is on the rise, and
as such, the need for reliable Simultaneous Localization
and Mapping (SLAM) systems for autonomous operation
is becoming increasingly critical. Since commercial mobile
robots are manufactured in large quantities, it is essential
to equip them with cost-efficient sensor setups such as
IMUs, encoders, and cameras, rather than expensive LiDAR
localization systems. However, real-world environments can
pose challenges for each of aforementioned modalities, for
moving objects and challenging lighting conditions, which
can reduce the effectiveness of visual odometry algorithms.
In addition, inertial fusion, particularly with commercial
IMUs, may encounter degenerate motion issues. Similarly,
wheel odometry may suffer from slippage.

Visual SLAM algorithms are typically designed with the
assumption of a static environment. Therefore, their perfor-
mance may be limited in dynamic environments due to the
presence of moving objects. As a result, it is essential for
the SLAM system to be able to handle such scenarios and
other challenging visual cases. Visual Inertial (VI) systems
are popular in the SLAM community, and most state-of-the-
art systems, such as [1], [2], provide good performance on
benchmark datasets recorded on UAVs, handheld devices,
or VR/AR equipment. However, in VI systems, it is im-
portant to consider the unobservability of scale and global
orientation relative to gravity direction, particularly when
the robot performs basic planar movements with constant
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Fig. 1. RVWO pipeline

acceleration (e.g., purely straight or rotational movements).
This issue becomes particularly pronounced during the in-
ertial initialization process [3]. This makes accuracy and
robustness of VI systems on wheeled robots questionable,
as we demonstrate in Section V.

In this study, we aimed to develop a specialized system
for wheeled robots with cost-efficient sensor setups that can
operate in challenging environments. Our proposed system
operates in real-time, and is based on the architecture of
the ORB-SLAM3 system; however, we use only visual and
encoder data as input.

In order to mitigate the issue of erroneous data association
arising from moving objects, we propose a reliability model
for visual landmarks. This model is updated by incorporating
prior semantic information of the landmark and its re-
projection error value in our back-end optimization process.
We introduce an adaptive M-estimator as an optimization
kernel to counter the impact of outliers during the Bundle
Adjustment process. Additionally, we incorporate the planar
motion assumption into the optimization process by imposing
two constraints. The first one involves the utilization of
preintegrated data from wheel odometry, while the second
one involves projecting filtered visual residuals from our
probabilistic model onto SE(2) space. This integration leads
to a reduction in visual odometry drift, enhances the accuracy
of long-term tracking, and improve robustness in challenging
scenarios.
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To ensure the effectiveness of our proposed RVWO
system, we conducted extensive evaluations using various
benchmarks and a real-world service robot. Firstly, we tested
our probabilistic approach on the TUM RGB-D dataset
[4], which is a widely recognized benchmark for visual
SLAM systems in dynamic environments. Additionally, we
evaluated our system on the OpenLoris benchmark [26],
which is a well-known benchmark for wheeled robots. Unlike
most visual-wheel solutions that only evaluate on their own
setup, we chose to evaluate our system on this benchmark
to assess its generalizability.

Furthermore, we conducted experiments on a real service
robot named Courier (see Fig. 2) to test our system in real-
world environment, including detailed analysis of a perfor-
mance in challenging situations. Our experiments demon-
strate that RVWO achieves robust and accurate tracking
and mapping results, thus demonstrating the effectiveness of
proposed system.

Fig. 2. Wheeled mobile robot used in the evaluation

II. RELATED WORK

We split analysis of previous works closely related to our
main contributions into two parts.

A. SLAM in Dynamic Environments

There is significant interest in enhancing the robustness
of visual SLAM systems by mitigating noise caused by the
invalid assumption of a static environment around the robot.
Several systems employ RGB-D cameras and utilize depth
information, such as Dyna-SLAM [11], which incorporates
Mask R-CNN for detecting potentially moving objects and
a multi-view geometry-based approach. Another example
is SOF-SLAM [12], which uses semantic optical flow and
builds upon the RGB-D version of ORB-SLAM2 [13]. DS-
SLAM [14] and OFM-SLAM [15] do not rely on depth and
instead use a semantic segmentation model in combination
with moving consistency checks or epipolar constraints.
DRE-SLAM [5] employs an object detection model (YOLO)
and K-means clustering for segmentation over depth data
from the RGB-D sensor, while Detect-SLAM [16] uses a
DNN-based object detector and propagates probabilities of
features. These systems primarily focus on outlier rejec-
tion during the front-end stage of visual SLAM, whereas
proposed approach is based on adaptive M-estimator and
designed to directly handle outliers during the optimization
stage of the back-end, which is a generalized approach

that can be adapted to any setup or system. We believe
that increasing the robustness of optimization in such a
manner can provide more stable performance in challenging
situations where the system may otherwise diverge.

B. Visual-Wheel (VW) Fusion

Several recent works elaborate on the fusion of optical data
with wheel odometry. DRE-SLAM [5] addresses the task of
building a static map, while odometric measurements from
wheel encoders are tightly-coupled with optical data using an
optimization-based method. SE2CLAM [6] implemented vi-
sual SLAM for SE(2) planar motion as a unary constraint on
SE(3) robot pose. SE2LAM [7] proposed a novel constraint
SE(2) − XY Z that allows parameterizing robot pose on
SE(2) along with considering the out−of −SE(2) motion
perturbation. Both systems [6], [7] only support monocular
data and require synchronization of wheel odometry with
camera data to establish correspondence between visual
frames and wheel encoder poses. Moreover, these systems
have only been evaluated on a custom setup where the
camera is directed towards the roof, reducing the likelihood
of encountering dynamic objects. This setup is not widely
applicable, as mobile robots may operate with cameras
facing forward or backward as well. VINS-on-wheels [3]
investigates problems of VI systems on wheeled robots, and
extends fusion to involve wheel odometry data. Most of these
methods have not undergone extensive testing under realistic
conditions, which may involve challenging scenarios such
as reflections, sudden changes in light intensity, or moving
objects in the field of view. As [26] states, SLAM systems for
service robots are really challenging, and need to be properly
tested and evaluated to ensure reliability of a system.

III. SYSTEM OVERVIEW

The RVWO pipeline is primarily based on the architecture
of the ORB-SLAM system, as illustrated in Fig. 1. The
system comprises three principal threads, namely Tracking,
Local Mapping, Loop Closing. We note major modifications
that have been introduced by RVWO below.

A. Input Data Processing

The input data for our system consists of a stream of
images (monocular/stereo/RGB-D) along with data from
encoders. To effectively utilize the encoder data, we adopted
the approach presented in [17], which involves performing
preintegration of wheel odometry. This process uses the
encoder motion model to acquire relative poses between two
consecutive image frames. Unlike other approaches, such as
[6] and [7], our method does not require interpolation to be
performed, and accept any frequency as input.

B. Robust Initialization

The visual initialization process in ORB-SLAM3 [1] finds
the relative initial pose by estimating the fundamental or es-
sential matrices. Additionally, we incorporate measurements
from encoders to validate of the initial map and overcome
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situations when poor visual initialization is performed, es-
pecially when the mobile robot performs purely rotational
movements.

C. Tracking Thread

The tracking thread is the front-end of the system and
is responsible for performing the initial pose estimation. In
cases where visual tracking fails due to visual challenges,
preintegrated measurements from wheel odometry are uti-
lized to provide better pose estimation. This thread performs
the pose optimization in the SE(2) space (see section IV-
B), and incorporates the map landmarks with corresponding
covariance, which represents their reliability. The probability
model of the landmarks is updated in the back-end (Local
Mapping Thread).

D. Mapping and Loop Closing Threads

When the tracking thread publishes a new keyframe to
the back-end, we perform pose optimization in SE(2) based
on local landmarks using the adaptive kernel from our
probabilistic model (see Section IV-A). Simultaneously, in
a parallel thread, we perform fast semantic segmentation
to classify new landmarks using Segformer [18], which has
been pre-trained on the ADE20K [19] indoor dataset. This
model is capable of producing output images at a rate of 30
Hz. Based on both the semantic class and projection error of
each landmark, we update its probability as an inlier. Then,
we perform local bundle adjustment in SE(2).

In the loop closing thread, we incorporate an additional
odometric constraint to the essential graph optimization
between sequential keyframes, and global bundle adjustment
is also performed in SE(2).

IV. ROBUST VISUAL WHEEL ODOMETRY

The objective of our study is to provide a SLAM system
intended for wheeled mobile robots (Fig. 2). To achieve this,
we modify the non-linear optimization pipeline, specifically
in the Pose Optimization and Bundle Adjustment modules.
Our approach is based on the methodology presented in [7].
Using the planar motion assumption, we reduce the estimated
robot state vector from SE(3) to SE(2) and denote it as

x = [R,p] ∈ SE(2), (1)

where R ∈ SO(2) is the robot orientation, p ∈ R2 is
the robot position on a plane. Given a set of keyframes
K, which observe {lj} landmark from L

.
= [l0 . . . lm], and

keyframe states X
.
= [x0 . . .xn], we iteratively update robot

state vector x, based on the following optimization problem,
which is stated as maximum a-posteriori estimation (MAP):

min
xi

( n∑
i=1

∥rOi,i+1∥2Σ−1
Oi,i+1

+
m−1∑
j=0

∑
i∈K

ρa

(
∥ri,j∥2Σ−1

i,j

))
(2)

where ri,j is a visual residual (SubSection IV-B.1); rOi,i+1 is
a wheel odometry residual (SubSection IV-B.2); ρa(·) is the
adaptive kernel (section IV-A). ΣOi,i+1

and Σi,j are covari-
ance matrices representing noise density for wheel odometry
and visual data respectively. MAP problem can be formulated

as a factor graph optimization [20] on a sliding window
of keyframes observing m landmarks. These observations
formulate the re-projection error, while odometric edge is
formulated between sequential keyframes. The optimization
graph is shown in Fig. 3.

Fig. 3. Visual-Wheel fusion in the form of factor graph

A. Visual Odometry for Dynamic Environment Based on the
Adaptive M-estimator

It is well-known that a negative impact of outliers and
moving objects on optimization quality can be decreased by
different outlier rejection techniques including M-estimators
[21]. In the SLAM field, the standard choice for outlier re-
jection is usage of Huber Loss, which down-weights outliers
impact, but still sensitive to large errors, which is the case for
moving objects presence. Hence, we introduce the adaptive
M-estimator, which is based on Barron Loss function [22].
For j-th landmark observed by i-th frame, the adaptive M-
estimator can be derived as follows:

ρa(eij , α, c) =
|α− 2|

α
·
(( ( eijc )2

α− 2
+ 1

)α
2 − 1

)
, (3)

where eij = ∥ri,j∥2Σ−1
i,j

is the re-projection error (see 2); α
is a parameter, establishing a shape of the function (see Fig.
4b); c is a parameter, which determines the width of the loss
function. In our implementation we set c = 1.

A useful property of the function (3) is that it generates any
standard loss, depending on α parameter. This is shown in
Fig. 4b. Generating of different losses down-weights outlier
impact in an adaptive manner in comparison with Huber
Loss. A practical advantage of the adaptive loss is that there
is no need to manually set a loss function based on prior
assumption about an outlier distribution, which may variate
depending on the scene. Instead, the loss can be adjusted
adaptively in run-time.

As demonstrated in [23], this approach is able to signif-
icantly improve the localization accuracy in the presence
of moving objects in the scene. However, if there is no
additional sources of prior knowledge about the moving
objects, then the α parameter has to be obtained as a result of
the alternating optimization, which have such disadvantages
as slow convergence and sensitivity to an initial guess.

Our approach is to directly configure the adaptive M-
estimator by adjusting the shape parameter. We introduce
a landmark reliability model, which utilizes both semantic
prior information about a visual landmark and re-projection
error for a corresponding pixel on an image plane. Thus, the
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α parameter is directly defined based on a reliability of a
landmark during the tracking process. Here, by the landmark
reliability we mean its probability to be static.

The reliability model can be described by the following
equation:

Pr = 1− (ωsPs + ωoPo), (4)

where Pr is the landmark reliability; Ps is the landmark
movement probability, which is based on semantic informa-
tion and updated in the tracking process; Po is the outlier
probability based on re-projection error; ωi are the weights
on each component.

The landmark movement probability is calculated by the
following equation:

Ps = ηPprior(λ1P̄s + λ2(1− P̄s)), (5)

where P̄s is a landmark movement probability calculated
from the last frame observed the landmark; Pprior is a prior
movement probability based on semantic label corresponding
to the landmark; λ1, λ2 are coefficients determining the prob-
ability propagation rate; η is a normalization term. Pprior is
pre-defined for each semantic label, which is provided by
the semantic segmentation neural network, as we described
in III-D. For example, we use Pprior = 0.95 for a ”person”
class.

The outlier probability is calculated by the following
derivation:

Po =

{
dij

dmax
if dij ≤ dmax

1 otherwise

dij = |eij − eth|, dmax = |emax − eth| = const,

(6)

where eij is an actual re-projection error for j-th landmark
observed by i-th frame; eth is a re-projection error thresh-
old; emax is a maximum allowable re-projection error. For
choosing emax we analysed re-projection error distribution
generated by ORB-SLAM3 visual odometry on eight fr3
sequences of TUM RGB-D [4] dataset (category Dynamic
Objects).

Finally, the shape parameter α dependency on the relia-
bility of a landmark is quadratic and designed as follows:

α =

{
aP̄ 2

r + bP̄r + c if P̄r ≤ Ph

−∞ otherwise
, (7)

where P̄r = 1 − Pr is a landmark ”unreliability”; Ph is a
truncation threshold; coefficients determine the form of the
functional dependency. The threshold is set to sharply down-
weight highly unreliable landmarks. The set of parameters
is chosen such that when a landmark is considered to be
reliable with Pr = 1, a standard Huber Loss (α = 1) is
used in the state estimation process. When a landmark is
considered as not reliable, α parameter gets infinitely small
and Tukey Loss is used, strictly rejecting the unreliable visual
landmark, that eliminates its impact on the state estimation.
In our implementation we use the following setting: Ph =
0.9; a = −8; b = −2; c = 1.

B. Tightly-Coupled Visual-Wheel Fusion Based on the Pla-
nar Motion Assumption

We perform visual-wheel fusion by exploiting the planar
motion assumption, applied to wheeled robots. Hence, robot
state vector as well as all the constraints in our non-linear
optimization are parameterized in SE(2) space. Here, we
describe the constraints utilized to formulate equation 2 in
the back-end optimization process in RVWO.

1) The visual re-projection constraint parameterized on
SE(2): This constraint represents the visual residual be-
tween an observed 2D feature u and 2D projected point u (ℓj)
from the corresponding landmark ℓ in 3D world frame w.r.t
robot body frame [Ri|pi] and then w.r.t image plane C:

ri,j = u (ℓj) = Π(RCBR
T
i (ℓj − pi) + pCB) + ηu, (8)

where ηu ∼ N
(
0, σ2

uI2
)

is a re-projection uncertainty (σu

is the covariance from ORB pyramid level from which the
feature is extracted) and [RCB |pCB ] is calculated from
extrinsic calibration of the camera w.r.t. the body frame. Π()
is a projection function, which depends on a camera model.

The feature-based SE(2) −XY Z constraint [7] benefits
from encapsulating the out−of−SE(2) motion perturbation
and directly parameterizing the robot’s poses on SE(2).

The out − of − SE(2) motion [7] includes two parts:
the translation perturbation along Z axis as ηz ∼ N

(
0, σ2

z

)
and the rotation perturbation in xy plane as ηxy ∼
N
(
02×1,Σθxy

)
.

Therefore, the pose after applying perturbation on SE(2)
can be written as [R̃i|p̃i] where:

R̃i = Ri e
(ηθ), p̃i = pi + ηz (9)

Then the projection equation (8) becomes

u (ℓj) = Π
(
RCBR̃i

T
(ℓ− p̃i) + pCB

)
+ ηu

≈ Π(ℓCi) + Jηθ
uθηθ + Ju

ηz
ηz + ηu

= Π(ℓCi
) + δηu,

(10)

where δηu is a synthetic zero-mean noise. The noises
ηθ, ηz and ηu are independent. Here we use first-order
approximation to linearize the noise terms.

2) The wheel odometry constraint parameterized on
SE(2): Inspired by [7] we perform the preintegration of
wheel encoder measurements on SE(2). From the motion
model for the wheel encoder, we get the relative robot
body poses between consecutive odometry readings. Hence,
the preintegrated odometry measurement is formulated as
follows:

ϕi := ϕ̃i − δ(ϕi),

pi := p̃i − δ(pi),
(11)

where ϕi is a yaw angle; pi is a 2D translation vector;
(̃·) denotes raw measured quantity; δ(·) are corresponding
noises. The propagation of the wheel odometry measurement
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Fig. 4. (a) Color indicate the alpha paramter chosen for a landmark, (b) Set of standard losses derived from the Barron Loss [22], (c) The trajectory
generated by RVWO on TUM RGB-D fr3/w/xyz sequence compared to groundtruth

can be written in a compact form:[
δ(pi+1)
δ(ϕi+1)

]
:= δ(νi+1) = Aiδ(νi) +Biηνi,

Ai =

[
I2 Φ

(
ϕ̃i

)
1×p̃i

0 1

]
,Bi =

[
Φ
(
ϕ̃i

)
0

0 1

]
,

(12)
where Ai, Bi are Jacobians of the motion model by state
vector and noise vector, respectively.

The covariance Σδ(νi+1) of a wheel odometry measure-
ment δ(νi) is propagated as follows:

Σδ(νi+1) = AiΣδ(νi)A
T
i +BiΣνiB

T
i , (13)

where Σνi represents covariance matrix of the wheel odom-
etry noise.

Finally, the wheel odometry constraint representing an er-
ror function of a preintegrated wheel odometry measurement
can be written as follows:

rOi,i+1 =

[
Φ (−ϕi) (pi+1 − pi)

ϕi+1 − ϕi

]
−
[

p̃i+1

ϕ̃i+1

]
(14)

We incorporate the resulting error function (14) as an
SE(2) wheel odometry edge in our factor graph.

Therefore, we formulate equation 2, from both equations
8 and 14.

V. EVALUATION

In order to ensure reliable odometry and localization for
wheeled robots, we conducted a thorough evaluation across
multiple stages:

A. First, we evaluated the impact of the adaptive M-
estimator, without wheel fusion, by using camera mea-
surements only. We integrated our proposed adaptive
M-estimator into the visual ORB-SLAM3 system and

tested it on the TUM RGB-D dataset [4], which contains
dynamic objects.

B. Second, in Fig. 2 and 3 in [26], the authors demonstrated
that many recent SLAM systems are not yet suitable for
use on wheeled service robots. To validate our system
on a publicly available benchmark, we evaluated RVWO
on the open-source OpenLoris dataset.

C. Third, we conducted further evaluation of RVWO on our
own mobile robot, illustrated in Fig. 2. We aim to assess
the robustness of our system in various challenging
conditions, such as lack of optical features, immediate
change in illumination, existence of moving objects.
We also hold the robot against its moving direction to
induce wheel slippage.

To align all the trajectories w.r.t. groundtruth we used
SE(3) Umeyama alignment method. In all the experiments
we utilized the Absolute Trajectory Error (ATE), which
provides a measure of the global consistency of the estimated
trajectory. We also employed the Root Mean Square Error
(RMSE), derived from the ATE, as an accuracy metric.

A. Evaluation of the Adaptive M-estimator on TUM RGB-D
Dataset

To validate the efficiency of the proposed adaptive M-
estimator, we selected sequences from the TUM RGB-D
dataset [4]. This dataset consists of recorded data from a
Kinect RGB-D sensor. For our evaluation, we used four
sequences containing scenes with moving objects (marked
fr3/w) and two static sequences (marked fr3/s). The fr3/w/rpy
and fr3/w(s)/xyz sequences involve rotational and transla-
tional movements of the camera, respectively, in three de-
grees of freedom. The fr3/w(s)/half sequence involves both
rotational and translational movements of the camera. The
fr3/w/static sequence involves a stationary camera.
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TABLE I
RESULTS OF THE ADAPTIVE M-ESTIMATOR EVALUATION ON TUM

RGB-D. BEST RESULT IS HIGHLIGHTED IN BOLD, WHILE SECOND-BEST

RESULT IS UNDERLINED.

Sequence
RMSE, m

ORB-
SLAM2

Detect-
SLAM

DS-
SLAM

Dyna-
SLAM

Ours

fr3/s/half 0.019 0.023 \ 0.019 0.017
fr3/s/xyz 0.009 0.023 \ 0.013 0.009
fr3/w/half 0.467 0.052 0.030 0.030 0.043

fr3/w/rpy 0.784 0.078 0.444 0.035 0.047

fr3/w/static 0.387 0.010 0.008 0.007 0.010

fr3/w/xyz 0.721 0.022 0.025 0.016 0.021

In Fig. 4a, we depict an illustration of several landmark
probability by tracking them and visualizing the shape
parameter used. It is seen that most landmarks located on
persons are already outliers because of their semantic prior.
We also note that α parameter value for such landmarks
increases when the person stop moving (as noted by the
radius of the red circles in Fig. 4a). For another static
landmark, e.g. the landmark located on the chair upper edge
to the bottom right of the images, it is clear that moving
this chair affects the α parameter value for this particular
landmark, as the movement causes an increase of a re-
projection error.

An example of the generated trajectory is illustrated in
Fig. 4c. We compared our approach with other state-of-
the-art systems that were specifically designed to operate
in dynamic environments. Mainly, we compare with DS-
SLAM [14], Detect-SLAM [16] and Dyna-SLAM [11]. The
evaluation results are presented in Table I. We marked
by {\} the cells indicating no testing results available in
public domain. As demonstrated in the table, our proposed
solution exhibits robustness in scenes with moving objects,
and it also achieves competitive results when compared
to the aforementioned state-of-the-art approaches designed
for operating in such environments. However, unlike Dyna-
SLAM, our approach does not depend on the type of camera
used and our solution can be applied to cheaper visual sensor
setups. At the same time, we show best results in static
sequences, which is achievable due to our adaptive outlier
rejection technique. This allows to down-weight an impact
of outliers caused not only by moving objects, but also by
occlusions and motion blur.

B. Evaluation of RVWO on OpenLoris Benchmark

In [26], authors addressed scene changes caused by human
activities, day-night shifts, and other factors. To capture these
changes, multiple sequences were collected for each scene
using several cameras, IMU, encoders, and LiDAR on a
wheeled robot moving at human walking speed or slower
in various environments. Our evaluation was performed on
several sequences using the stereo fisheye RealSense T265
camera.

TABLE II
RESULTS OF EVALUATION ON OPENLORIS DATASET. BEST RESULT IS

HIGHLIGHTED IN BOLD, WHILE {-} INDICATES FAILURE.

RMSE, m
Sequence Wheel

Odometry
ORB-SLAM3

(S-I)
VINS-Fusion

(S-W)
RVWO
(S-W)

office1-1 0.040 0.109 0.104 0.020
office1-3 0.043 − 0.037 0.022
office1-5 0.090 0.235 0.323 0.081
office1-7 0.072 0.069 0.064 0.022
home1-1 0.230 0.406 0.570 0.221
home1-2 0.314 0.363 0.470 0.299
home1-5 0.066 0.318 0.374 0.069

cafe1-1 0.236 0.116 0.324 0.213

cafe1-2 0.424 0.164 0.401 0.422

corridor1-3 0.222 0.990 0.525 0.159
corridor1-4 0.345 0.819 0.716 0.235
corridor1-5 0.640 1.131 0.504 0.420

We performed testing of the open-source systems ORB-
SLAM3 in Stereo-Inertial (S-I) mode and VINS-Fusion3 in
Stereo-Wheel (S-W) mode.

Table II demonstrates that wheel encoders provide accu-
rate odometry measurements. At the same time, S-I ORB-
SLAM3 suffers from bigger drift and fails in some cases (as
discussed in Section V-C).

From S-W VINS-Fusion4 test results it can be seen that
although this system performs fusion of visual and wheel
odometry measurements, it still drifts more than pure wheel
odometry in some cases. This indicates the negative impact
of visual challenges in OpenLoris dataset on the fusion ac-
curacy. In contrast, RVWO demonstrates robust and reliable
performance in different scenes, showing that our proposed
solution adapts to cases when visual tracking is unstable and
when pure wheel odometry drifts.

C. Evaluation of RVWO on Custom Hardware Setup in
Challenging Scenarios

In this section, we provide an analysis of experiments
conducted on our custom sensor setup. Our setup includes
stereo camera Zed2 with an internal IMU mounted on
top of a wheeled mobile robot (see Fig. 2). The robot is
equipped with internal wheel encoders that provide odometry
measurements with a frequency of 30 Hz. For both intrinsic
and extrinsic camera parameters calibration we used Kalibr
toolbox [25]. The IMU noise density and bias random walk
obtained by using Allan Variance, which is a statistical
technique used to characterize the random noise in the
IMU measurements. Intrinsic parameters of wheel encoders
are calculated using the online calibration technique from
[27]. The transformation matrix from the wheel odometer

3This implementation is the closest to VINS-on-Wheels [3]. It is built
upon VINS-Fusion system [27]. see https://github.com/TouchDeeper/VIW-
Fusion

4We manually inflated the wheel encoder noise values by factors of 0.1,
1, 10, 100 to find the best configuration.
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Fig. 5. Trajectories generated on courier 4 sequence compared to
groundtruth

TABLE III
RESULTS OF EVALUATION ON REAL-WORLD SEQUENCES RECORDED ON

OUR SETUP, BEST RESULT IS HIGHLIGHTED IN BOLD, WHILE {−}
INDICATES FAILURE.

Sequence
RMSE, m

Wheel
Odometry

(W)

ORB-
SLAM3

(S-I)

VINS-
Fusion
(S-I)

VINS-
Fusion
(S-W)

RVWO
(ours)
(S-W)

courier 1 2.899 0.383 0.262 0.369 0.421

courier 2 0.509 − 0.338 0.289 0.140
courier 3 0.415 − 0.180 0.248 0.096
courier 4 1.790 − 0.736 1.272 0.278

coordinate system to the camera coordinate system is com-
puted by using the same approach4. Check our open source
repository2 for further details on calibration and sensor setup.
We recorded four test sequences. In the first sequence,
named courier 1, the robot navigates inside an office space.
This sequence primarily involves straight movements with
a constant acceleration. The second and third sequences,
named courier 2 and courier 3, present challenging condi-
tions for both visual and wheel odometry. These conditions
include moving persons, featureless surfaces, and wheel
slippage cases. The fourth and most challenging sequence,
named courier 4, includes scenes with moving objects, wheel
slippage and closed camera situations. (see Fig. 7). These
sequences are available in RVWO repository2.

For each sequence, we used Cartographer [24] algorithm
to generate groundtruth trajectory. This algorithm utilizes
wheel odometry and 2D LiDAR data into an offline global
optimization problem. It is important to note as seen in Table.
III, that pure wheel odometry provided by our mobile robot
is not as reliable as in [26] in general (see Fig. 5).

We evaluate the robustness of RVWO and other systems
in specific challenging cases as follows:

Fig. 6. Trajectories of RVWO, and other systems, generated on Courier 4
sequence compared to groundtruth. From Above, X , Y and Z respectively,
then zoomed trajectory along Z-axis generated by RVWO.

(a) (b)

(c) (d)

Fig. 7. Visual challenging conditions: (a) Closing the camera, (b) Moving
objects, (c) Low visual texture, (d) Light reflection and high exposure

1) Visual challenging scenarios: Our sequences mostly
consist of visual challenging situations, such as featureless
surfaces (see Fig. 7-c), light reflection (see Fig. 7-d), or
artificially closing the camera as in Fig. 7-a. Red circles
marked as 1, 2 in Fig. 5 represents moments when the robot
encounters the full absence of visual features as in Fig. 7-a.

2) Wheel slippage: Red circle marked as 3 in Fig. 5
represents the case when we artificially stop the robot
while moving (motors still rotating), causing a slippage and
inducing wrong wheel odometry data to test the quality of
visual-wheel fusion in such scenario.

Similarly to Section V-B, we test visual-inertial systems
on our sequences to validate a performance of VI SLAM
systems on service robots. We evaluate both VINS-Fusion
and ORB-SLAM3 in Stereo-Inertial mode (see Table III). S-I

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 2133 submitted to 2023 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Received March 2, 2023.



ORB-SLAM3 shows a poor performance on most sequences
except for courier 1, while S-I VINS-Fusion shows better
performance even in difficult sequences where there are
challenging visual cases. In general, the performance of both
systems here is questionable, because the convergence of
inertial parameters to optimal values cannot be guaranteed
in the case of planar motion [3]. Additionally, we show in
Fig. 5 and 6 that S-I VINS-Fusion is drifting in the moments
marked as 1 and 2. This leads to accumulation of the drift
along the overall trajectory.

We show in Table III, that poor wheel odometry affects
visual-wheel fusion in S-W VINS-Fusion3. This results
in better S-I VINS-Fusion performance compared to S-W
VINS-Fusion3, despite problematic performance of visual-
inertial setup in planar motion. Moreover, in courier 4, wheel
slippage as in 3 in Fig. 5, and visual challenging cases as
in 1, 2, result in large drift of S-W VINS-Fusion3. It is im-
portant to note that although this system uses planar motion
assumption, it drifts noticeably along Z-axis as depicted in
Fig. 6 when facing these challenges.

In contrast, RVWO outperforms aforementioned systems
(see Table III) with an average RMSE error around 25
cm on 70 m-long sequences with challenging visual and
wheel odometry conditions. Moreover, we note in Fig. 6
that in visual challenging and wheel slippage situations,
RVWO disturbance along Z-axis is minimal compared to
other systems, as it is fluctuating around the zero value with a
maximum magnitude of 5 mm, thus validating the beneficial
impact of the planar motion assumption.

VI. CONCLUSION

This study introduces a novel robust visual-wheel SLAM
system (RVWO) that leverages the planar motion assumption
and adaptively filters outliers to improve pose estimation
accuracy and robustness for service wheeled robots. Fur-
thermore, prior semantic information about the environ-
ment is incorporated to enhance performance. The system’s
effectiveness is demonstrated through validation on open-
source datasets and a series of experiments, which include a
comparison with other fusion techniques using a basic sensor
setup. Results indicate that RVWO provides state-of-the-art
performance on a real service wheeled robot.
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